Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wastewater as a source of nutrients

China faces massive wastewater problems. At the same time it has set itself the task of investing more in the market for renewable energies. Together with Alensys AG and Hydro-Air GmbH, ttz Bremerhaven is developing a system within the BIOWARE project which mixes municipal wastewater with groundwater. In this way an innovative irrigation method is being introduced into energy wood plantations.

Using technology to link wastewater and energy wood to create bioenergy regions in China

The development of a cost-efficient, water-saving and sustainable irrigation system for plant wastewater facilities is one of the objectives of BIOWARE, a project promoted by the Federal Ministry of Economic and Technology. Above all in rural areas of China, wastewater treatment systems are either inadequate or non-existent.

A nutrient solution produced by means of biological wastewater recycling and comprising wastewater and groundwater could be the answer to this problem and at the same time it facilitates the efficient irrigation of energy wood plantations. Through the new irrigation method, not only water and money will be saved, but also the use of conventional fertilizers will be reduced by the controlled application of nutrients from the wastewater.

This also contributes to intensifying technology transfer between German and Chinese enterprises. Further co-operative German-Chinese projects in the area of renewable energies might follow, for example in conjunction with the processing of energy wood.

The irrigation system helps to control the water quality and regulate its supply. This takes place online so that the system can be operated without any time delay and from any location via Internet. The prototype developed in BIOWARE for technical implementation comprises three modules: an irrigation module, a control module and a monitoring module. The monitoring module records soil parameters such as moisture. Sensors transmit their measurements to the control module which determines the energy plantation’s nutrient requirements and communicates the exact mixing ratio to the irrigation module. The irrigation module produce a nutrient solution from municipal wastewater and groundwater which irrigates the energy plantation. This irrigation method leads to a greater biomass yield especially in dry regions. At the same time less groundwater is used and there are considerable cost savings in wastewater treatment in small municipal sewage plants.

Currently the Chinese bioenergy market for electricity-, heat- and fuel- materials is undeveloped. The new monitoring and control system contributes a valuable part for regenerative energies. One aim of BIOWARE is to support the Chinese energy policy to increase the share of renewable energies within the total energy generation to 16% until 2020.

BIOWARE, co-ordinated by the research service provider ttz Bremerhaven, started in October 2009 with a total budget of about 592.000 Euro. The plan is to install the prototype of the wastewater recycling system in spring 2011 in Yangjiteng, a small town near Chengdu with about 20.000 inhabitants. After a successful test phase, the system can be marketed and established as an overall bioenergy wastewater concept in other regions of China and thus bioenergy regions can be created (similar to the German bioenergy regions under

ttz Bremerhaven is a provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of experts are working in the areas of food, environment and health.

Christian Colmer
Head of Communication and Media
ttz Bremerhaven
Fischkai 1
D-27572 Bremerhaven (Germany)
Tel: +49 (0)471 48 32 -124
Fax: +49 (0)471 48 32 - 129

Christian Colmer | idw
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>