Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste silicon gets new life in lithium-ion batteries at Rice University

05.09.2012
Researchers at Rice University and the Université catholique de Louvain, Belgium, have developed a way to make flexible components for rechargeable lithium-ion (LI) batteries from discarded silicon.
The Rice lab of materials scientist Pulickel Ajayan created forests of nanowires from high-value but hard-to-recycle silicon. Silicon absorbs 10 times more lithium than the carbon commonly used in LI batteries, but because it expands and contracts as it charges and discharges, it breaks down quickly.

The Ajayan lab reports this week in the journal Proceedings of the National Academy of Science on its technique to make carefully arrayed nanowires encased in electrically conducting copper and ion-conducting polymer electrolyte into an anode. The material gives nanowires the space to grow and shrink as needed, which prolongs their usefulness. The electrolyte also serves as an efficient spacer between the anode and cathode.

Transforming waste into batteries should be a scalable process, said Ajayan, Rice’s M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. The researchers hope their devices are a step toward a new generation of flexible, efficient, inexpensive batteries that can conform to any shape.

Co-lead authors Arava Leela Mohana Reddy, a Rice research scientist, and Alexandru Vlad, a former research associate at Rice and now a postdoctoral researcher at the Université catholique de Louvain, were able to pull multiple layers of the anode/electrolyte composite from a single discarded wafer. Samples of the material made at Rice look like strips of white tape or bandages.

They used an established process, colloidal nanosphere lithography, to make a silicon corrosion mask by spreading polystyrene beads suspended in liquid onto a silicon wafer. The beads on the wafer self-assembled into a hexagonal grid – and stayed put when shrunken chemically. A thin layer of gold was sprayed on and the polystyrene removed, which left a fine gold mask with evenly spaced holes on top of the wafer. “We could do this on wafers the size of a pizza in no time,” Vlad said.

The mask was used in metal-assisted chemical etching, in which the silicon dissolved where it touched the metal. Over time in a chemical bath, the metal catalyst would sink into the silicon and leave millions of evenly spaced nanowires, 50 to 70 microns long, poking through the holes.

The researchers deposited a thin layer of copper on the nanowires to improve their ability to absorb lithium and then infused the array with an electrolyte that not only transported ions to the nanowires but also served as a separator between the anode and a later-applied cathode.

“Etching is not a new process,” Reddy said. “But the bottleneck for battery applications had always been taking nanowires off the silicon wafer because pure, free-standing nanowires quickly crumble.” The electrolyte engulfs the nanowire array in a flexible matrix and facilitates its easy removal. “We just touch it with the razor blade and it peels right off,” he said. The mask is left on the unperturbed wafer to etch a new anode.

When combined with a spray-on current collector on one side and a cathode and current collector on the other, the resulting battery showed promise as it delivered 150 milliamp hours per gram with little decay over 50 charge/discharge cycles. The researchers are working to enhance those qualities and testing the anodes in standard battery configurations.

“The novelty of the approach lies in its inherent simplicity,” Reddy said. “We hope the present process will provide a solution for electronics waste management by allowing a new lease on life for silicon chips.”

Co-authors are intern Anakha Ajayan and graduate student Neelam Singh of Rice and professors Jean-Francois Gohy and Sorin Melinte of the Université catholique de Louvain.

The Army Research Office supported research at Rice, and the National Scientific Research Foundation, the Special Research Fund, the TINTIN project – ARC, the French Community of Belgium, the Fund for Scientific Research and the Wallonne Region (Programme ERABLE) supported research in Belgium.
Read the abstract at www.pnas.org/cgi/doi/10.1073/pnas.1208638109
Follow Rice News and Media Relations via Twitter @RiceUNews

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/09/04/waste-silicon-gets-new-life-in-lithium-ion-batteries-at-rice-university/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>