Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing through walls

Researchers at MIT’s Lincoln Lab have developed new radar technology that provides real-time video of what’s going on behind solid walls.

The ability to see through walls is no longer the stuff of science fiction, thanks to new radar technology developed at MIT’s Lincoln Laboratory.

Much as humans and other animals see via waves of visible light that bounce off objects and then strike our eyes’ retinas, radar “sees” by sending out radio waves that bounce off targets and return to the radar’s receivers. But just as light can’t pass through solid objects in quantities large enough for the eye to detect, it’s hard to build radar that can penetrate walls well enough to show what’s happening behind. Now, Lincoln Lab researchers have built a system that can see through walls from some distance away, giving an instantaneous picture of the activity on the other side.

The researchers’ device is an unassuming array of antenna arranged into two rows — eight receiving elements on top, 13 transmitting ones below — and some computing equipment, all mounted onto a movable cart. But it has powerful implications for military operations, especially “urban combat situations,” says Gregory Charvat, technical staff at Lincoln Lab and the leader of the project.

Waves through walls

Walls, by definition, are solid, and that’s certainly true of the four- and eight-inch-thick concrete walls on which the researchers tested their system.

At first, their radar functions as any other: Transmitters emit waves of a certain frequency in the direction of the target. But in this case, each time the waves hit the wall, the concrete blocks more than 99 percent of them from passing through. And that’s only half the battle: Once the waves bounce off any targets, they must pass back through the wall to reach the radar’s receivers — and again, 99 percent don’t make it. By the time it hits the receivers, the signal is reduced to about 0.0025 percent of its original strength.

But according to Charvat, signal loss from the wall is not even the main challenge. “[Signal] amplifiers are cheap,” he says. What has been difficult for through-wall radar systems is achieving the speed, resolution and range necessary to be useful in real time. “If you’re in a high-risk combat situation, you don’t want one image every 20 minutes, and you don’t want to have to stand right next to a potentially dangerous building,” Charvat says.

The Lincoln Lab team’s system may be used at a range of up to 60 feet away from the wall. (Demos were done at 20 feet, which Charvat says is realistic for an urban combat situation.) And, it gives a real-time picture of movement behind the wall in the form of a video at the rate of 10.8 frames per second.

Filtering for frequencies

One consideration for through-wall radar, Charvat says, is what radio wavelength to use. Longer wavelengths are better able to pass through the wall and back, which makes for a stronger signal; however, they also require a correspondingly larger radar apparatus to resolve individual human targets. The researchers settled on S-band waves, which have about the same wavelength as wireless Internet — that is, fairly short. That means more signal loss — hence the need for amplifiers — but the actual radar device can be kept to about eight and a half feet long. “This, we believe, was a sweet spot because we think it would be mounted on a vehicle of some kind,” Charvat says.

Even when the signal-strength problem is addressed with amplifiers, the wall — whether it’s concrete, adobe or any other solid substance — will always show up as the brightest spot by far. To get around this problem, the researchers use an analog crystal filter, which exploits frequency differences between the modulated waves bouncing off the wall and those coming from the target. “So if the wall is 20 feet away, let’s say, it shows up as a 20-kilohertz sine wave. If you, behind the wall, are 30 feet away, maybe you’ll show up as a 30-kilohertz sine wave,” Charvat says. The filter can be set to allow only waves in the range of 30 kilohertz to pass through to the receivers, effectively deleting the wall from the image so that it doesn’t overpower the receiver.

“It’s a very capable system mainly because of its real-time imaging capability,” says Robert Burkholder, a research professor in Ohio State University’s Department of Electrical and Computer Engineering who was not involved with this work. “It also gives very good resolution, due to digital processing and advanced algorithms for image processing. It’s a little bit large and bulky for someone to take out in the field,” he says, but agrees that mounting it on a truck would be appropriate and useful.

Monitoring movement

In a recent demonstration, Charvat and his colleagues, Lincoln Lab assistant staff John Peabody and former Lincoln Lab technical staff Tyler Ralston, showed how the radar was able to image two humans moving behind solid concrete and cinder-block walls, as well as a human swinging a metal pole in free space. The project won best paper at a recent conference, the 2010 Tri-Services Radar Symposium.

Because the processor uses a subtraction method — comparing each new picture to the last, and seeing what’s changed — the radar can only detect moving targets, not inanimate objects such as furniture. Still, even a human trying to stand still moves slightly, and the system can detect these small movements to display that human’s location.

The system digitizes the signals it receives into video. Currently, humans show up as “blobs” that move about the screen in a bird’s-eye-view perspective, as if the viewer were standing on the wall and looking down at the scene behind. The researchers are currently working on algorithms that will automatically convert a blob into a clean symbol to make the system more end-user friendly. “To understand the blobs requires a lot of extra training,” Charvat says.

With further refinement, the radar could be used domestically by emergency-response teams and others, but the researchers say they developed the technology primarily with military applications in mind. Charvat says, “This is meant for the urban war fighter … those situations where it’s very stressful and it’d be great to know what’s behind that wall.”

Caroline McCall | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>