Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT develops a unique fuel cell system: trials under way

05.01.2011
Grid electricity from natural gas using fuel cell technology

Solid oxide fuel cell (SOFC) technology is showing promise with regard to future electricity production. VTT Technical Research Centre of Finland has built a system that uses fuel cells to produce grid electricity from natural gas. What makes the system unique is that the electric power produced comes from a single 10 kW planar SOFC stack. The technology is being developed as part of the Tekes Fuel Cell Programme.

Construction of the large SOFC power plants of the future will require high-power fuel cell stacks. This is the first time a 10 kW power class planar SOFC fuel stack is being operated as part of a complete fuel cell system.

The system is currently undergoing endurance testing to determine component reliability, durability and development needs. Some of the system’s components are prototypes developed at VTT that have not yet reached mass production. Since the beginning of November 2010 the system has completed more than 1,500 hours of reliable and continuous operation. The electricity produced equates to the average annual consumption of five apartments in an apartment block.

SOFC fuel cell technology is an extremely low-emission energy source. The SOFC technology can be used to utilize a wide range of different fuels, including biogas, which is normally difficult to exploit efficiently using other technologies.

Lappeenranta University of Technology and Aalto University are among those participating in the project, which is coordinated by VTT and jointly funded by Tekes - the Finnish Funding Agency for Technology and Innovation and Finnish industrial companies. Development of the system’s power electronics, used in transforming direct current produced by the SOFC into alternating current suitable for the grid, was carried out at Lappeenranta University of Technology. Aalto University has participated in the unit’s mechanical design. The SOFC stack for the system was supplied by Versa Power Systems Inc. of Canada.

Apart from funding, Finnish companies are also involved in development and gathering of experience regarding the application of their own products to SOFC systems. Wärtsilä Finland Oy, among others, is exploiting experiences garnered under the research project in its own SOFC system development work.

Additional information:

Research Scientist Matias Halinen
Tel. +358 20 722 6590; matias.halinen@vtt.fi
Chief Research Scientist Jari Kiviaho
Tel. +358 20 722 5298; jari.kiviaho@vtt.fi
Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

| VTT info
Further information:
http://www.vtt.fi/?lang=en
http://www.vtt.fi/news/2010/01052011-sofc.jsp

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>