Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vistec, CEA/Leti and D2S join forces on e-beam direct write solutions for the 45- and 32-nm nodes

13.01.2009
E-beam supplier Vistec, along with semiconductor research group CEA/Leti, and emerging design and software company D2S, today announced a collaboration focused on refining and validating advanced design-for-e-beam (DFEB) solutions for the 45- and 32-nm nodes.

Over the next 12 months, CEA/Leti will manufacture test chips using a combination of D2S’ advanced DFEB design and software capabilities and latest high-resolution e-beam direct-write (EbDW) lithography equipment from Vistec. The goal of this collaboration is to print 45- and 32-nm circuits using Vistec Electron Beam’s SB3054 system installed at CEA/Leti.

High speed, low cost
Driving the need for this joint effort is the ever-rising cost of semiconductor masks, which is making low-volume production of custom ICs economically infeasible. Using an e-beam tool to directly write patterns onto a wafer has always been the most accurate way to pattern a semiconductor wafer; however, low throughput using a traditional variable shaped beam (VSB) approach has limited its application. By efficiently employing character or cell projection (CP) technology to re-write the throughput rules around EbDW, the DFEB solution virtually eliminates the cost of masks and can speed time to market by shortening the design-to-lithography process flow.

D2S’ proprietary DFEB solution encourages and isolates the most commonly recurring patterns of chip designs and translates them into templates on “mini-reticles”. A prepared set of templates on a mini-reticle then allows these complex patterns to be replicated in a single shot on a wafer. This is accomplished using Vistec’s SB3054 tool utilizing CP technology. By reducing a design’s required shot count, this approach improves throughput over VSB while enhancing accuracy.

Solutions for a new production paradigm
“Ever increasing mask costs are presenting numerous challenges in the semiconductor industry”, said Aki Fujimura, founder and chief executive officer of D2S. “Combining EbDW with CP provides a low-risk, low-cost path to a new production paradigm. Producers of high value, low-volume devices will be the beneficiaries of this joint effort to validate direct-write-e-beam solutions at leading edge technology nodes—thanks in part to our DFEB ecosystem partners, CEA/Leti and Vistec”.

Laurent Pain, lithography laboratory manager at CEA/Leti, stated, “DFEB is an innovative, new approach to the old problem of boosting e-beam throughput while enhancing accuracy. We are looking forward to this collaboration to validate accuracy and throughput goals at the 45- and 32-nm nodes using the Vistec SB3054 system in tandem with D2S’ advanced DFEB solution.”

“We see the integrated CP functionality and DFEB software as a bridge between the high-resolution requirements of advanced R&D and the challenging throughput expectations driven by industrial prototyping applications,” said Wolfgang Dorl, general manager at Vistec Electron Beam. “The CP feature is available today from Vistec and was recently installed at CEA/Leti to enable this collaboration and research.”

Clément Moulet | alfa
Further information:
http://www.cea.fr

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>