Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual top hats allow swarming robots to fly in tight formation

16.05.2017

Georgia Tech researchers also building face-detecting blimps

Georgia Institute of Technology researchers have created a team of free-flying robots that obeys the two rules of the air: don't collide or undercut each other. They've also built autonomous blimps that recognize hand gestures and detect faces.


The quadcopters wear virtual 'top hats,' to avoid flying underneath each other.

Credit: Georgia Tech

Both projects will be presented at the 2017 IEEE International Conference on Robotics and Automation (ICRA) May 29 - June 3 in Singapore.

In the first, five swarm quadcopters zip back and forth in formation, then change their behaviors based on user commands. The trick is to maneuver without smacking into each other or flying underneath another machine. If a robot cuts into the airstream of a higher flying quadcopter, the lower machine must quickly recover from the turbulent air or risk falling out of the sky.

"Ground robots have had built-in safety 'bubbles' around them for a long time to avoid crashing," said Magnus Egerstedt, the Georgia Tech School of Electrical and Computer Engineering professor who oversees the project. "Our quadcopters must also include a cylindrical 'do not touch' area to avoid messing up the airflow for each other. They're basically wearing virtual top hats."

As long as the Georgia Tech machines avoid flying in the two-foot space below their neighbor, they can swarm freely without a problem. That typically means they dart around each other rather than going low.

Ph.D. student Li Wang figured out the size of the "top hat" one afternoon by hovering one copter in the air and sending others back and forth underneath it. Any closer than 0.6 of a meter (or five times the diameter from one rotor to another) and the machines were blasted to the ground. Then he created algorithms to allow them to change formation midflight.

"We figured out the smallest amount of modifications a quadcopter must make to its planned path to achieve the new formation," said Wang. "Mathematically, that's what a programmer wants -- the smallest deviations from an original flight plan."

The project is part of Egerstedt and Wang's overall research, which focuses on easily controlling and interacting with large teams of robots.

"Our skies will become more congested with autonomous machines, whether they're used for deliveries, agriculture or search and rescue," said Egerstedt, who directs Georgia Tech's Institute for Robotics and Intelligent Machines. "It's not possible for one person to control dozens or hundreds of robots at a time. That's why we need machines to figure it out themselves."

The researchers overseeing the second project, the blimps, 3D-printed a gondola frame that carries sensors and a mini camera. It attaches to either an 18- or 36-inch diameter balloon. The smaller blimp can carry a five-gram payload; the larger one supports 20 grams.

The autonomous blimps detect faces and hands, allowing people to direct the flyers with movements. All the while, the machine gathers information about its human operator, identifying everything from hesitant glares to eager smiles. The goal is to better understand how people interact with flying robots.

"Roboticists and psychologists have learned many things about how humans relate to robots on the ground, but we haven't created techniques to study how we react to flying machines," said Fumin Zhang, the Georgia Tech associate professor leading the blimp project. "Flying a regular drone close to people presents a host of issues. But people are much more likely to approach and interact with a slow-moving blimp that looks like a toy."

The blimps' circular shape makes them harder to steer with manual controllers, but allows them to turn and quickly change direction. This is unlike the more popular zeppelin-shaped blimps commonly used by other researchers.

Zhang has filed a request with Guinness World Records for the smallest autonomous blimp. He sees a future where blimps can play a role in people's lives, but only if roboticists can determine what people want and how they'll react to a flying companion.

"Imagine a blimp greeting you at the front of the hardware store, ready to offer assistance," Zhang said. "People are good at reading people's faces and sensing if they need help or not. Robots could do the same. And if you needed help, the blimp could ask, then lead you to the correct aisle, flying above the crowds and out of the way."

Media Contact

Jason Maderer
maderer@gatech.edu
404-660-2926

 @GeorgiaTech

http://www.gatech.edu 

Jason Maderer | EurekAlert!

Further reports about: Automation IEEE Robots agriculture free-flying robots human operator quadcopter

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>