Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Power Plants for Renewable Energies

30.04.2012
Siemens recently put two virtual power plants into operation. Virtual power plants are networks of several small power stations that are run like a single system.

One of the new virtual power plants enables the Munich municipal utility company to run six of its cogeneration modules, five hydroelectric facilities, and one wind-power plant more efficiently and economically than if they were operated separately. The facilities have a combined output of 20 megawatts.



The second virtual power plant was set up for the utility company RWE and consists of a number of similar components to those in Munich. Although it will initially also have an output of 20 megawatts, the second virtual power plant will be expanded to 200 megawatts by 2015. The key component of each virtual power plant network is the distributed energy management system from Siemens.

When incorporated into smart grids, virtual power plants open up new possibilities for energy suppliers and operators of energy generation systems. The electricity produced in this manner can be traded on the European Energy Exchange in Leipzig, Germany, for example, or offered to other markets. Besides offering energy suppliers an additional way of selling electricity, virtual power plants also make the utilities more flexible.

In addition, they can help improve grid stability by making controlling power available in the minute reserve range. Virtual power plants are ideally suited for renewable sources of energy. Since Germany's Renewable Energy Act was amended in January 2012, the associated market subsidy system encourages operators to sell electricity from their virtual power plants directly on the energy markets. As a result of the "energy revolution," the importance of virtual power plants in smart grids is expected to grow.

The distributed energy management system from the energy automation experts at Siemens uses sophisticated information and communications technology to network and combine the various decentralized power producers so that they can be centrally managed. To make this possible, the system processes all of the relevant information, including weather forecasts, current electricity prices, and energy demand. On the basis of this data, the system draws up an operation schedule for all of the associated facilities and monitors its implementation.

The system updates its energy consumption prediction every hour, depending on the weather forecast and the type of day. The operation schedule minimizes the costs of generating electricity and operating the facilities within the virtual power plant network. In doing so, the system takes economic as well as environmental aspects into account.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>