Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibration energy the secret to self-powered electronics

21.02.2014
A multi-university team of engineers has developed what could be a promising solution for charging smartphone batteries on the go — without the need for an electrical cord.

Incorporated directly into a cell phone housing, the team's nanogenerator could harvest and convert vibration energy from a surface, such as the passenger seat of a moving vehicle, into power for the phone. "We believe this development could be a new solution for creating self-charged personal electronics," says Xudong Wang, an assistant professor of materials science and engineering at the University of Wisconsin-Madison.

Wang, his Ph.D. student Yanchao Mao and collaborators from Sun Yat-sen University in China, and the University of Minnesota Duluth described their device, a mesoporous piezoelectric nanogenerator, in the January 27, 2014, issue of the journal Advanced Energy Materials.

The nanogenerator takes advantage of a common piezoelectric polymer material called polyvinylidene fluoride, or PVDF. Piezoelectric materials can generate electricity from a mechanical force; conversely, they also can generate a mechanical strain from an applied electrical field.

Rather than relying on a strain or an electrical field, the researchers incorporated zinc oxide nanoparticles into a PVDF thin film to trigger formation of the piezoelectric phase that enables it to harvest vibration energy. Then, they etched the nanoparticles off the film; the resulting interconnected pores — called "mesopores" because of their size — cause the otherwise stiff material to behave somewhat like a sponge.

That sponge-like material is key to harvesting vibration energy. "The softer the material, the more sensitive it is to small vibrations," says Wang.

The nanogenerator itself includes thin electrode sheets on the front and back of the mesoporous polymer film, and the researchers can attach this soft, flexible film seamlessly to flat, rough or curvy surfaces, including human skin. In the case of a cell phone, it uses the phone's own weight to enhance its displacement and amplify its electrical output.

The nanogenerator could become an integrated part of an electronic device — for example, as its back panel or housing — and automatically harvest energy from ambient vibrations to power the device directly.

Wang says the simplicity of his team's design and fabrication process could scale well to larger manufacturing settings. "We can create tunable mechanical properties in the film," he says. "And also important is the design of the device. Because we can realize this structure, phone-powering cases or self-powered sensor systems might become possible."

—Renee Meiller, 608-262-2481, meiller@engr.wisc.edu

Xudong Wang | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that Heraeus PID lamps have been used in the measurement of air quality at the London airport?
02.05.2016 | Heraeus Noblelight GmbH

nachricht Could off-grid electricity systems accelerate energy access?
26.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>