Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viaducts with wind turbines, the new renewable energy source

02.07.2015

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this kind of infrastructures can move wind turbines and produce energy.


This is an illustration of two identical wind turbines installed in a viaduct.

Credit: José Antonio Peñas (Sinc)

The study is based in models and computer simulations, which were carried out by researcher Oscar Soto and his colleagues in Kingston University (London). Researchers have presented the wind turbines as porous discs in order to evaluate the air resistance and test different kind of configurations.

"As natural, the more surface is swiped by the rotor, the more power can be produced; however, it was seen that in small turbines the power rate per square meter is higher", explains Soto, who considers that the configurations with two identical turbines would be the most viable to be installed in viaducts.

If only produced power was evaluated, the best solutions would be the installation of two wind turbines with different sizes - in order to embrace the maximum available space-, or even a matrix of 24 small turbines - due to their power production per surface unit and low weight-, but concerning to viability, the best option is the one which includes two medium sized wind turbines.

Results confirm that each viaduct presents specific energy possibilities and wind potential. In the Juncal Viaduct case, the evaluated power would be about 0,25 MW per wind turbine. So, with two turbines, the total power output would be 0,5 MW, which is classified in the medium-power range.

"This would be the equivalent to 450-500 homes average consumption", says Soto, who adds: "This kind of installation would avoid the emission of 140 tons of CO2 per year, an amount that represents the depuration effect of about 7.200 trees".

This research has been promoted by the Canarian company ZECSA. Researchers from Vigo University have taken part to analyze the electrical connections needed to develop the project, along with other researchers from Las Palmas de Gran Canaria University, who were in charge of the integration in the scope of renewable energies ".

In fact, the study has been published in the Renewable and Sustainable Energy Reviews and it is framed in PAINPER, a public infrastructures exploitation plan to boost the use of renewable energies.

"PAINPER is an initiative which emerges from the difficulties seen in the implantation of this kind of energies in heavily built-up territories, as well as protected areas with low available space for new installations", says Aday C. Martín, manager at ZECSA, who considers that renewable energy produced in wind turbines under viaducts could be added to energy from other wind, solar, geothermal and biomass installations.

References:

Ó. Soto Hernández, K. Volkov, A. C. Martín Mederos, J. F. Medina Padrón, A. E. Feijóo Lorenzo. "Power output of a wind turbine installed in an already existing viaduct". Renewable and Sustainable Energy Reviews 48: 287-299, 2015.

SINC | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>