Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW Fusion Reactor Concept Could Be Cheaper Than Coal

09.10.2014

Fusion energy almost sounds too good to be true – zero greenhouse gas emissions, no long-lived radioactive waste, a nearly unlimited fuel supply.

Perhaps the biggest roadblock to adopting fusion energy is that the economics haven't penciled out. Fusion power designs aren't cheap enough to outperform systems that use fossil fuels such as coal and natural gas.


U of Washington

The UW’s current fusion experiment, HIT-SI3. It is about one-tenth the size of the power-producing dynomak concept.

University of Washington engineers hope to change that. They have designed a concept for a fusion reactor that, when scaled up to the size of a large electrical power plant, would rival costs for a new coal-fired plant with similar electrical output.

The team published its reactor design and cost-analysis findings last spring and will present results Oct. 17 at the International Atomic Energy Agency's Fusion Energy Conference in St. Petersburg, Russia.

"Right now, this design has the greatest potential of producing economical fusion power of any current concept," said Thomas Jarboe, a UW professor of aeronautics and astronautics and an adjunct professor in physics.

The UW's reactor, called the dynomak, started as a class project taught by Jarboe two years ago. After the class ended, Jarboe and doctoral student Derek Sutherland – who previously worked on a reactor design at the Massachusetts Institute of Technology – continued to develop and refine the concept.

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn. The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

"This is a much more elegant solution because the medium in which you generate fusion is the medium in which you're also driving all the current required to confine it," Sutherland said.

There are several ways to create a magnetic field, which is crucial to keeping a fusion reactor going. The UW's design is known as a spheromak, meaning it generates the majority of magnetic fields by driving electrical currents into the plasma itself. This reduces the amount of required materials and actually allows researchers to shrink the overall size of the reactor.

Other designs, such as the experimental fusion reactor project that's currently being built in France – called Iter – have to be much larger than the UW's because they rely on superconducting coils that circle around the outside of the device to provide a similar magnetic field. When compared with the fusion reactor concept in France, the UW's is much less expensive – roughly one-tenth the cost of Iter – while producing five times the amount of energy.

The UW researchers factored the cost of building a fusion reactor power plant using their design and compared that with building a coal power plant. They used a metric called "overnight capital costs," which includes all costs, particularly startup infrastructure fees. A fusion power plant producing 1 gigawatt (1 billion watts) of power would cost $2.7 billion, while a coal plant of the same output would cost $2.8 billion, according to their analysis.

"If we do invest in this type of fusion, we could be rewarded because the commercial reactor unit already looks economical," Sutherland said. "It's very exciting."

Right now, the UW's concept is about one-tenth the size and power output of a final product, which is still years away. The researchers have successfully tested the prototype's ability to sustain a plasma efficiently, and as they further develop and expand the size of the device they can ramp up to higher-temperature plasma and get significant fusion power output.

The team has filed patents on the reactor concept with the UW's Center for Commercialization and plans to continue developing and scaling up its prototypes.

Other members of the UW design team include Kyle Morgan of physics; Eric Lavine, Michal Hughes, George Marklin, Chris Hansen, Brian Victor, Michael Pfaff, and Aaron Hossack of aeronautics and astronautics; Brian Nelson of electrical engineering; and, Yu Kamikawa and Phillip Andrist formerly of the UW.

The research was funded by the U.S. Department of Energy.

###

For more information, contact Jarboe at jarboe@aa.washington.edu or 206-685-3427 and Sutherland at das1990@uw.edu.

Michelle Ma | newswise

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>