Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Dallas lab eliminates rare metals in electric motors

20.05.2014

Lab Shows Powerful, Possible Next Step in Electric Motors at Summit

A team from the Renewable Energy and Vehicular Technology Laboratory (REVT) at UT Dallas was one of a few research groups selected for advanced participation in a Department of Energy conference aimed at presenting the next generation of energy technologies.


Research conducted by Dr. Wei Wang (left) and Dr. Babak Fahimi, director of the Renewable Energy and Vehicular Technology Laboratory (REVT), was demonstrated at the recent Department of Energy conference.


Dr. Chenjie Lin, a postdoctoral researcher, was among those who demonstrated the double-stator switched reluctance machine at the ARPA-E Energy Innovation Summit.

The DOE’s Advanced Research Projects Agency-Energy (ARPA-E) program hosts an annual summit in Washington, D.C., for researchers, entrepreneurs, investors, corporate executives and government officials to share transformational research funded through the program.

Dr. Babak Fahimi, professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science and director of REVT, has received $2.8 million through an ARPA-E program aimed at reducing rare earth metals, which are used in motors of electric vehicles. The metals are expensive, difficult to find and are usually imported into the United States from countries such as China. In addition, the mining process for these metals releases significant amounts of pollution into the atmosphere.

While hundreds of award recipients were invited to exhibit their research, Fahimi’s team was one of five selected to demonstrate their work to lawmakers and participate in a round-table discussion on climate change.

REVT members demonstrated electric motors or generators that eliminate rare earth metals. Typical motors are powered through the electromagnetic interaction between a rotor, which contains rare earth metals and rotates, and another part known as a stator, which is stationary but houses electromagnetic sources. The REVT solution, called a double-stator switched reluctance machine (DSSRM), has two stators, one on either side of the rotor, that cause an electromagnetic reaction that produces power. This approach produces significantly greater power and torque at a given size and weight than traditional motor technologies without the use of permanent magnets.

“The transformative nature of our motor technology stems from a novel magnetic configuration, which significantly reduces the radial forces while increasing the motional forces by a factor of three,” Fahimi said. “This technology also benefits from high levels of fault tolerance, low-cost manufacturing and low acoustic noise. I strongly believe this technology is highly appealing to automotive, oil and gas, and renewable energy industries.”

Besides delivering more power and torque than competing technologies, this machine could be manufactured entirely in the United States, which would eliminate the pollution from mining rare earth metals, while also significantly reducing the amount of air pollution released through electric vehicle emissions. Other applications of this technology are airplanes, fans, pumps, wind generators and robots.

The research, first funded in 2012, has one patent pending. At the conference earlier this year, REVT members demonstrated the technology to potential commercial licensees.

Team members who demonstrated the technology included Pete Poorman, assistant director of corporate relations, and Drs. Wei Wang and Chenjie Lin, postdoctoral researchers in the lab.

“Having the opportunity to present at the ARPA-E Energy Innovation Summit was a huge opportunity to further our work,” Poorman said. “Being one of the few projects selected for the round-table discussion and congressional reception is both an honor and an acknowledgement of the excellent work being done in the REVT lab.”

Media Contact: LaKisha Ladson, UT Dallas, (972) 883-4183, lakisha.ladson@utdallas.edu
or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu.

LaKisha Ladson | Eurek Alert!
Further information:
http://www.utdallas.edu/news/2014/5/16-30081_Lab-Shows-Powerful-Possible-Next-Step-in-Electric-_story-wide.html

Further reports about: ARPA-E Energy acoustic emissions entrepreneurs motors pumps switched technologies vehicles

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>