Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uprated Siemens D3 wind turbine implements sum of design and operational experiences

12.03.2014
  • Improved direct-drive technology with enhanced performance
  • Increased energy yield of up to 4 percent
  • Rotors with diameters of 101, 108 and 113 meters drive the 3.2 MW generator

Siemens Energy has uprated its D3 onshore platform wind turbines. The new SWT-3.2-101, SWT-3.2-108 and SWT-3.2-113 machines feature improved performance from 3.0 to 3.2 megawatts (MW) and implement the sum of design and operational experiences. The uprated products will enter serial production by the end of 2014. They will be available with 101 and 108 meter rotors for IEC class IA sites, and a 113 meter rotor for IEC class IIA sites. The 3 MW version will remain available for project sites with lower wind speeds.


Proven platform, refined technology: The uprated Siemens D3 wind turbines combine experience and innovation.

Simplicity and efficiency were the key words when Siemens developed its first commercial direct drive turbine in 2009. Following five years of experience and a large number of D3 wind turbines installed worldwide, the fundamental approach remains the same, but the technology continues to be refined. The uprated Siemens D3 wind turbines represent a classical wind turbine evolution, combining the reliability of a proven and tested concept with cutting edge technology development. Improvements in the turbine control system and increased efficiency through the use of stronger magnets are the key factors that allowed Siemens to get more power out of the D3 drivetrain.

The uprating underlines the structural reserves already found in the construction of Siemens' gearless wind turbines. "One important goal of our development work is to utilize innovation to further tap the technical potential of our products," says Henrik Stiesdal, CTO of Siemens Wind Power. "Rotors, structures and performance have been tested intensively to simulate more than 20 years of lifetime stress. This resulted in a new product generation which offers the reliability of the predecessor while delivering up to 4 percent more energy yield."

Wind power and the associated service activities are part of Siemens' Environmental Portfolio. Around 43 percent of the company's revenues are generated by green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

More information about the trade fair appearance is available at www.siemens.com/energy/ewea2014

The Siemens Energy Sector is the world's leading supplier of a complete spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal year 2013 (ended September 30) the Energy Sector had revenues of EUR 26.6 billion and received new orders totaling approximately EUR 28.8 billion, and posted a profit of approximately EUR 2.0 billion. On September 30, 2013, Siemens' Energy Sector had a workforce of about 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EWP201403030e

Contact

Mr. Bernd Eilitz
Energy Sector

Siemens AG

Lindenplatz 2

20099  Hamburg

Germany

Tel: +49 (40) 2889-8842

Bernd Eilitz | Siemens Energy Sector

Further reports about: CTO D3 Energy IEC SWT-3 Wind construction processing rotors structures wind turbines

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>