Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uprated Siemens D3 wind turbine implements sum of design and operational experiences

12.03.2014
  • Improved direct-drive technology with enhanced performance
  • Increased energy yield of up to 4 percent
  • Rotors with diameters of 101, 108 and 113 meters drive the 3.2 MW generator

Siemens Energy has uprated its D3 onshore platform wind turbines. The new SWT-3.2-101, SWT-3.2-108 and SWT-3.2-113 machines feature improved performance from 3.0 to 3.2 megawatts (MW) and implement the sum of design and operational experiences. The uprated products will enter serial production by the end of 2014. They will be available with 101 and 108 meter rotors for IEC class IA sites, and a 113 meter rotor for IEC class IIA sites. The 3 MW version will remain available for project sites with lower wind speeds.


Proven platform, refined technology: The uprated Siemens D3 wind turbines combine experience and innovation.

Simplicity and efficiency were the key words when Siemens developed its first commercial direct drive turbine in 2009. Following five years of experience and a large number of D3 wind turbines installed worldwide, the fundamental approach remains the same, but the technology continues to be refined. The uprated Siemens D3 wind turbines represent a classical wind turbine evolution, combining the reliability of a proven and tested concept with cutting edge technology development. Improvements in the turbine control system and increased efficiency through the use of stronger magnets are the key factors that allowed Siemens to get more power out of the D3 drivetrain.

The uprating underlines the structural reserves already found in the construction of Siemens' gearless wind turbines. "One important goal of our development work is to utilize innovation to further tap the technical potential of our products," says Henrik Stiesdal, CTO of Siemens Wind Power. "Rotors, structures and performance have been tested intensively to simulate more than 20 years of lifetime stress. This resulted in a new product generation which offers the reliability of the predecessor while delivering up to 4 percent more energy yield."

Wind power and the associated service activities are part of Siemens' Environmental Portfolio. Around 43 percent of the company's revenues are generated by green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

More information about the trade fair appearance is available at www.siemens.com/energy/ewea2014

The Siemens Energy Sector is the world's leading supplier of a complete spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal year 2013 (ended September 30) the Energy Sector had revenues of EUR 26.6 billion and received new orders totaling approximately EUR 28.8 billion, and posted a profit of approximately EUR 2.0 billion. On September 30, 2013, Siemens' Energy Sector had a workforce of about 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EWP201403030e

Contact

Mr. Bernd Eilitz
Energy Sector

Siemens AG

Lindenplatz 2

20099  Hamburg

Germany

Tel: +49 (40) 2889-8842

Bernd Eilitz | Siemens Energy Sector

Further reports about: CTO D3 Energy IEC SWT-3 Wind construction processing rotors structures wind turbines

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>