Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uprated Siemens D3 wind turbine implements sum of design and operational experiences

12.03.2014
  • Improved direct-drive technology with enhanced performance
  • Increased energy yield of up to 4 percent
  • Rotors with diameters of 101, 108 and 113 meters drive the 3.2 MW generator

Siemens Energy has uprated its D3 onshore platform wind turbines. The new SWT-3.2-101, SWT-3.2-108 and SWT-3.2-113 machines feature improved performance from 3.0 to 3.2 megawatts (MW) and implement the sum of design and operational experiences. The uprated products will enter serial production by the end of 2014. They will be available with 101 and 108 meter rotors for IEC class IA sites, and a 113 meter rotor for IEC class IIA sites. The 3 MW version will remain available for project sites with lower wind speeds.


Proven platform, refined technology: The uprated Siemens D3 wind turbines combine experience and innovation.

Simplicity and efficiency were the key words when Siemens developed its first commercial direct drive turbine in 2009. Following five years of experience and a large number of D3 wind turbines installed worldwide, the fundamental approach remains the same, but the technology continues to be refined. The uprated Siemens D3 wind turbines represent a classical wind turbine evolution, combining the reliability of a proven and tested concept with cutting edge technology development. Improvements in the turbine control system and increased efficiency through the use of stronger magnets are the key factors that allowed Siemens to get more power out of the D3 drivetrain.

The uprating underlines the structural reserves already found in the construction of Siemens' gearless wind turbines. "One important goal of our development work is to utilize innovation to further tap the technical potential of our products," says Henrik Stiesdal, CTO of Siemens Wind Power. "Rotors, structures and performance have been tested intensively to simulate more than 20 years of lifetime stress. This resulted in a new product generation which offers the reliability of the predecessor while delivering up to 4 percent more energy yield."

Wind power and the associated service activities are part of Siemens' Environmental Portfolio. Around 43 percent of the company's revenues are generated by green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology.

More information about the trade fair appearance is available at www.siemens.com/energy/ewea2014

The Siemens Energy Sector is the world's leading supplier of a complete spectrum of products, services and solutions for power generation in thermal power plants and using renewables, power transmission in grids and for the extraction, processing and transport of oil and gas. In fiscal year 2013 (ended September 30) the Energy Sector had revenues of EUR 26.6 billion and received new orders totaling approximately EUR 28.8 billion, and posted a profit of approximately EUR 2.0 billion. On September 30, 2013, Siemens' Energy Sector had a workforce of about 83,500. Further information is available at: http://www.siemens.com/energy

Reference Number: EWP201403030e

Contact

Mr. Bernd Eilitz
Energy Sector

Siemens AG

Lindenplatz 2

20099  Hamburg

Germany

Tel: +49 (40) 2889-8842

Bernd Eilitz | Siemens Energy Sector

Further reports about: CTO D3 Energy IEC SWT-3 Wind construction processing rotors structures wind turbines

More articles from Power and Electrical Engineering:

nachricht One Step Closer to a Single-Molecule Device
28.05.2015 | Columbia University School of Engineering and Applied Science

nachricht Researchers develop intelligent handheld robots
27.05.2015 | University of Bristol

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>