Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Unzipping’ poplars’ biofuel potential


What began 20 years ago as an innovation to improve paper industry processes and dairy forage digestibility may now open the door to a much more energy- and cost-efficient way to convert biomass into fuel.

The research, which appears in the current issue of Science, focuses on enhancing poplar trees so they can break down easier and thus improving their viability as a biofuel.

Scientists have unzipped poplars' biofuel potential. Photo by Kurt Stepnitz

The long-term efforts and teamwork involved to find this solution can be described as a rare, top-down approach to engineering plants for digestibility, said Curtis Wilkerson, Michigan State University plant biologist and the lead author.

“By designing poplars for deconstruction, we can improve the degradability of a very useful biomass product,” said Wilkerson, Great Lakes Bioenergy Research Center scientist. “Poplars are dense, easy to store and they flourish on marginal lands not suitable for food crops, making them a non-competing and sustainable source of biofuel.”

... more about:
»biomass »clear »crops »exotic »genes »monomers »poplar »produce

The idea to engineer biomass for easier degradation first took shape in the mid-1990s in the lab of John Ralph, University of Wisconsin-Madison professor and GLBRC plants leader. Ralph’s group was looking to reduce energy usage in the paper pulping process by more efficiently removing lignin – the polymer that gives plant cell walls their sturdiness – from trees.

s approach had clear benefits for the biofuels industry as well. The difficulty in removing and processing lignin remains a major obstacle to accessing the valuable sugars contained within biomass, adding energy and cost to the production of biofuels.

Seeing an opportunity to carry out Ralph’s concept in poplar, GLBRC researchers pooled their expertise. To produce the enhanced poplars, Wilkerson identified and isolated a gene capable of making monomers – molecular glue of sorts – with bonds that are easier to break apart. Next, Shawn Mansfield with the University of British Columbia successfully put that gene into poplars. The team then determined that the plants not only created the monomers but also incorporated them into the lignin polymer.

This introduced weak links into the lignin backbone and transformed the poplars’ natural lignin into a more easily degradable version. “We can now move beyond tinkering with the known genes in the lignin pathway to using exotic genes to alter the lignin polymer in predesigned but plant-compatible ways,” Ralph said.

“This approach should pave the way to generating more valuable biomass that can be processed in a more energy efficient manner for biofuels and paper products.” The research also is noteworthy for being the direct result of a collaboration funded by the GLBRC, funded by the U.S. Department of Energy and created to make transformational breakthroughs in new cellulosic biofuels technology.

Realizing the collaborative project called for a wide array of expertise, from finding the gene and introducing it into the plants, to proving, via newly designed analyses, that the plant was utilizing the new monomers in making its lignin. “I guarantee that John Ralph and I would never have met without the GLBRC,” Wilkerson said.

“When I first met him at a group retreat, I knew very little about lignin. But I ended up sharing some techniques I’d been using for totally different projects that I thought might be useful for his ‘zip-lignin’ research. The collaboration really grew from there.”

Layne Cameron | EurekAlert!
Further information:

Further reports about: biomass clear crops exotic genes monomers poplar produce

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>