Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Passau researches environmentally sustainable data centres for Smart Cities

28.01.2014
The University of Passau is a key partner in the recently launched EU project DC4Cities (“An environmentally sustainable data centre for Smart Cities”), where the energy consumption of data centres is adapted for use in future Smart Cities.

Among other research, the University of Passau will look into the coordination of energy consumption between multiple data centres and develop prediction schemes that enable a location-aware prognosis of energy availability.

Smart Cities should optimize resource usage and minimize emissions. The project DC4Cities will promote the role of data centres as “eco-friendly” key players in Smart City energy policies. Data centres play two different and complementary roles in Smart Cities’ energy policies:

1. they support Smart Cities, e.g. by optimizing resource allocation and by providing ITC services to customers

2. data centres are large energy consumers that are expected to run at the highest levels of renewable energy sources.

The goal of the project DC4Cities is to make all types of existing and new data centres energy adaptive, without requiring any modification to their logistical processes or infrastructure and without impacting on the quality of services provided to their users. Targets include ensuring that 80 percent of data centres’ energy comes from renewable sources, while at the same time minimizing their overall energy consumption.

The optimal energy source usage in urban eco-friendly data centres will be achieved through the adaptation of the data centre software and operations to the available energy, while no modification in the data centre logistics is required.

The project DC4Cities will develop a wide span of technology components at different layers. The main central component is the “Data Centre Energy Controller“, which provides two main interfaces:

• The “Renewable Energy Adaptive Interface” is used to retrieve information on energy availabi¬lity from energy providers and energy constraint directives from the Smart City authorities and the Smart Grid.

• The “Energy Adaptive Data Centre Operation Interface” is used to implement power consumption plans on the data centre’s subsystems.

The results of the project research will be evaluated in two (already existing) Smart City trial test beds in Trento (Italy) and in Barcelona (Spain), and by special lab experimentation at the HP Italy Innovation Centre.

Consortium
- FreeMind Consulting Belgium bvba/sprl
- University of Mannheim
- HP Italy Innovation Centre
- University of Passau
- Center for REsearch And Telecommunication Experimentation for NETworked communities
- Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile
- Centre de Serveis Científics i Acadèmics de Catalunya
- Institut National de Recherche en Informatique et en Automatique
- Gas Natural SDG SA
- Institut Municipal Informatica de Barcelona (Ajuntament de Barcelona)

Katrina Jordan | idw
Further information:
http://www.dc4cities.eu

More articles from Power and Electrical Engineering:

nachricht Another Milestone in Hybrid Artificial Photosynthesis
31.08.2015 | Lawrence Berkeley National Laboratory

nachricht New high energy density automotive battery system from Fraunhofer IISB and international partners
25.08.2015 | Fraunhofer-Gesellschaft

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>