Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno demonstrates successful sludge-to-power research

24.09.2010
Like the little engine that could, the University of Nevada, Reno experiment to transform wastewater sludge to electrical power is chugging along, dwarfed by the million-gallon tanks, pipes and pumps at the Truckee Meadows Water Reclamation Facility where, ultimately, the plant’s electrical power could be supplied on-site by the process University researchers are developing.

“We are very pleased with the results of the demonstration testing of our research,” Chuck Coronella, principle investigator for the research project and an associate professor of chemical engineering, said.

“The process to dry the sludge to make it burnable for a gasification process, which could then be transformed into electricity, is working very well. This is an important step for our renewable energy research, processing about 20 pounds an hour of sludge in a continuous-feed system to produce about 3 pounds an hour of dried powder.”

University of Nevada, Reno Sludge dryer experiment successful for renewable energy research. Photo by Mike Wolterbeek.

The team of researchers custom built the processing machine in a lab at the University and brought it to the plant for testing. It uses an innovative process with relatively low temperatures in a fluidized bed of sand and salts to economically produce the biomass fuel from the gooey sludge.

The new patent-pending, low-cost, energy-efficient technology is an experimental carbon-neutral system. The solid fuel it produces will be analyzed for its suitability to be used for fuel through gasification, and the refrigerator-size demonstration unit will help researchers determine the optimum conditions for a commercial-sized operation.

“The beauty of this process is that it’s designed to be all on-site, saving trucking costs and disposal fees for the sludge,” Victor Vasquez, a University faculty member in chemical engineering and collaborator, said. “It uses waste heat from the process to drive the electrical generation. It also keeps the sludge out of the landfill.”

Estimates, which will be further refined through the research, show that a full-scale system could potentially generate 25,000 kilowatt-hours per day to help power the local reclamation facility.

The demonstration-scale project is a collaboration with the cities of Reno and Sparks, operators of the wastewater plant. The city councils signed an interlocal agreement recently to allow the research to integrate into their operation, providing space for the experiments, the dewatered sludge and other resources to help make the project a success.

“Economically, this makes sense,” Coronella said. “Treatment plants have to get rid of the sludge, and what better way than to process it on-site and use the renewable energy to lower operating costs. This demonstration gives the University an opportunity to involve students in development of waste-to-energy technology, which ultimately will benefit the community. It’s a win-win for everyone involved.”

“Our next step is to do exactly what this dryer is doing on a much larger scale,” he added. “We plan to demonstrate the technology at a scale 100 times larger, to convince investors and plant operators of the technology’s viability.”

The University’s Technology Transfer Office, with assistance from the College of Business, is supporting the project with plans to make the system available to hundreds of communities around the country that operate water-treatment plants.

For example, there are approximately 700,000 metric tons of dried sludge produced annually in California municipalities, which would sustainably generate as much as 10 million kilowatt-hours per day.

The project is funded through the Energy Innovations Small Grant Program, the California Energy Commission and the Department of Energy. This phase of the project was selected for funding by the University’s Tech Transfer Office under a DOE grant to support transferring technologies from the lab to practical application.

The project is one of many of the University’s renewable energy research areas that have commercial potential to help Nevada’s economy grow.

Nevada’s land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of more than 17,000 students. The University is home to one the country’s largest study-abroad programs and the state’s medical school, and offers outreach and education programs in all Nevada counties. For more information, visit http://newsroom.unr.edu.

Media Contact:
Mike Wolterbeek
Media Relations Officer
University Media Relations
University of Nevada, Reno/108
Reno, NV 89557
mwolterbeek@unr.edu
775-784-4547 phone
775-784-1422 fax

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>