Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Nevada, Reno demonstrates successful sludge-to-power research

Like the little engine that could, the University of Nevada, Reno experiment to transform wastewater sludge to electrical power is chugging along, dwarfed by the million-gallon tanks, pipes and pumps at the Truckee Meadows Water Reclamation Facility where, ultimately, the plant’s electrical power could be supplied on-site by the process University researchers are developing.

“We are very pleased with the results of the demonstration testing of our research,” Chuck Coronella, principle investigator for the research project and an associate professor of chemical engineering, said.

“The process to dry the sludge to make it burnable for a gasification process, which could then be transformed into electricity, is working very well. This is an important step for our renewable energy research, processing about 20 pounds an hour of sludge in a continuous-feed system to produce about 3 pounds an hour of dried powder.”

University of Nevada, Reno Sludge dryer experiment successful for renewable energy research. Photo by Mike Wolterbeek.

The team of researchers custom built the processing machine in a lab at the University and brought it to the plant for testing. It uses an innovative process with relatively low temperatures in a fluidized bed of sand and salts to economically produce the biomass fuel from the gooey sludge.

The new patent-pending, low-cost, energy-efficient technology is an experimental carbon-neutral system. The solid fuel it produces will be analyzed for its suitability to be used for fuel through gasification, and the refrigerator-size demonstration unit will help researchers determine the optimum conditions for a commercial-sized operation.

“The beauty of this process is that it’s designed to be all on-site, saving trucking costs and disposal fees for the sludge,” Victor Vasquez, a University faculty member in chemical engineering and collaborator, said. “It uses waste heat from the process to drive the electrical generation. It also keeps the sludge out of the landfill.”

Estimates, which will be further refined through the research, show that a full-scale system could potentially generate 25,000 kilowatt-hours per day to help power the local reclamation facility.

The demonstration-scale project is a collaboration with the cities of Reno and Sparks, operators of the wastewater plant. The city councils signed an interlocal agreement recently to allow the research to integrate into their operation, providing space for the experiments, the dewatered sludge and other resources to help make the project a success.

“Economically, this makes sense,” Coronella said. “Treatment plants have to get rid of the sludge, and what better way than to process it on-site and use the renewable energy to lower operating costs. This demonstration gives the University an opportunity to involve students in development of waste-to-energy technology, which ultimately will benefit the community. It’s a win-win for everyone involved.”

“Our next step is to do exactly what this dryer is doing on a much larger scale,” he added. “We plan to demonstrate the technology at a scale 100 times larger, to convince investors and plant operators of the technology’s viability.”

The University’s Technology Transfer Office, with assistance from the College of Business, is supporting the project with plans to make the system available to hundreds of communities around the country that operate water-treatment plants.

For example, there are approximately 700,000 metric tons of dried sludge produced annually in California municipalities, which would sustainably generate as much as 10 million kilowatt-hours per day.

The project is funded through the Energy Innovations Small Grant Program, the California Energy Commission and the Department of Energy. This phase of the project was selected for funding by the University’s Tech Transfer Office under a DOE grant to support transferring technologies from the lab to practical application.

The project is one of many of the University’s renewable energy research areas that have commercial potential to help Nevada’s economy grow.

Nevada’s land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of more than 17,000 students. The University is home to one the country’s largest study-abroad programs and the state’s medical school, and offers outreach and education programs in all Nevada counties. For more information, visit

Media Contact:
Mike Wolterbeek
Media Relations Officer
University Media Relations
University of Nevada, Reno/108
Reno, NV 89557
775-784-4547 phone
775-784-1422 fax

Mike Wolterbeek | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>