Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado student-built satellite selected for flight by NASA

28.01.2010
Satellite only the size of a Rubik's Cube

A tiny communications satellite designed and built by University of Colorado at Boulder undergraduates has been selected as one of three university research satellites to be launched into orbit in November as part of a NASA space education initiative.

The three satellites, dubbed "CubeSats" because of their shape, were built by CU-Boulder, Montana State University and Kentucky Space, which is a consortium of state universities. CubeSats are roughly four inches on a side, have a volume of about one quart and weigh about 2.2 pounds. The satellites are being flown as part of NASA's Educational Launch of Nanosatellite, or ELaNA, mission, said Chris Koehler, director of the Colorado Space Grant Consortium, or COSGC, which is headquartered at CU-Boulder.

The CU-Boulder satellite, named Hermes, was designed, built and tested by roughly 100 COSGC students on the CU-Boulder campus -- nearly all undergraduates -- over a period of about two and one-half years, said Koehler. The goal of the mission is to improve communications systems in tiny satellites through on-orbit testing of a high data-rate communication system that will allow scientists and engineers to downlink large quantities of information.

"This is great news for the students and for the Colorado Space Grant Consortium," said Koehler. "This is a homegrown CU-Boulder satellite and these students have pushed the capabilities of communication systems by integrating them into a very tiny satellite." Based in the CU-Boulder College of Engineering and Applied Science, COSGC is funded by NASA and is a statewide organization involving 16 colleges, universities and institutions around Colorado.

Koehler said it is challenging to find launch opportunities for student satellites like Hermes. The three student satellites will be attached to a Taurus XL launch vehicle that also will launch NASA's Glory mission to study solar radiation. CU-Boulder's Laboratory for Atmospheric and Space Physics designed and built a multimillion dollar solar payload for the Glory mission known as the Total Irradiance Monitor that will measure the total light coming from the sun at all wavelengths to help determine the energy balance of the planet.

CU-Boulder senior Nicole Doyle, project manager for Hermes and an aerospace engineering sciences department major, said the satellite has two communications systems. "One will allow us to 'talk' to the satellite and the other one will be used to test the high-speed communications system. If we are successful, the hopes are it can be used on other satellites."

The three CubeSat satellites will be attached to the Taurus XL rocket in a mechanical system known as a PPOD developed by the California Polytechnic State University in partnership with Stanford University. Once the rocket reaches about 385 miles high, the satellites will be ejected from the PPOD and will spring off into separate orbits, said Doyle.

The CU-Boulder satellite will be in contact with a COSGC ground station atop the Discovery Learning Center at the CU-Boulder engineering college. A second ground station is being built by the COSGC students in Longmont, about 15 miles northeast of Boulder, to monitor the high-speed communications data system, said Doyle.

"We are all really excited for launch," said Doyle. "We are now in our final push to test the communication sequence system and to finish our environmental testing, which includes vibration and vacuum chamber tests to verify that the satellite can survive in orbit."

Doyle said that when she got to CU-Boulder she was surprised to discover undergraduates had regular opportunities to design, build, test and fly spacecraft. "A number of students in my classes were talking about building satellites, so I decided to see what it was all about. That's when I came into the Colorado Space Grant Consortium," she said.

"This has been an incredible experience for me," said Doyle. "We learn from other CU students who are working on other space projects and who have experience in the kinds of research we are doing with Hermes. This is a great opportunity for students like me who want to work in the aerospace industry after college."

COSGC provides Colorado higher education students access to space through innovative courses, real-world, hands-on space hardware and satellite programs. The students interact with engineers and scientists from NASA and aerospace companies to develop, test and fly new space technologies on high-altitude balloons, sounding rockets and orbiting satellites.

Of the 52 space grant consortiums in the United States, Colorado's has been active in designing, building and flying 10 sounding rocket payloads, three space shuttle payloads, a satellite and hundreds of balloon experiments in the past 20 years, Koehler said.

For more information on COSGC visit: http://spacegrant.colorado.edu/.

Chris Koehler | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>