Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado student-built satellite selected for flight by NASA

28.01.2010
Satellite only the size of a Rubik's Cube

A tiny communications satellite designed and built by University of Colorado at Boulder undergraduates has been selected as one of three university research satellites to be launched into orbit in November as part of a NASA space education initiative.

The three satellites, dubbed "CubeSats" because of their shape, were built by CU-Boulder, Montana State University and Kentucky Space, which is a consortium of state universities. CubeSats are roughly four inches on a side, have a volume of about one quart and weigh about 2.2 pounds. The satellites are being flown as part of NASA's Educational Launch of Nanosatellite, or ELaNA, mission, said Chris Koehler, director of the Colorado Space Grant Consortium, or COSGC, which is headquartered at CU-Boulder.

The CU-Boulder satellite, named Hermes, was designed, built and tested by roughly 100 COSGC students on the CU-Boulder campus -- nearly all undergraduates -- over a period of about two and one-half years, said Koehler. The goal of the mission is to improve communications systems in tiny satellites through on-orbit testing of a high data-rate communication system that will allow scientists and engineers to downlink large quantities of information.

"This is great news for the students and for the Colorado Space Grant Consortium," said Koehler. "This is a homegrown CU-Boulder satellite and these students have pushed the capabilities of communication systems by integrating them into a very tiny satellite." Based in the CU-Boulder College of Engineering and Applied Science, COSGC is funded by NASA and is a statewide organization involving 16 colleges, universities and institutions around Colorado.

Koehler said it is challenging to find launch opportunities for student satellites like Hermes. The three student satellites will be attached to a Taurus XL launch vehicle that also will launch NASA's Glory mission to study solar radiation. CU-Boulder's Laboratory for Atmospheric and Space Physics designed and built a multimillion dollar solar payload for the Glory mission known as the Total Irradiance Monitor that will measure the total light coming from the sun at all wavelengths to help determine the energy balance of the planet.

CU-Boulder senior Nicole Doyle, project manager for Hermes and an aerospace engineering sciences department major, said the satellite has two communications systems. "One will allow us to 'talk' to the satellite and the other one will be used to test the high-speed communications system. If we are successful, the hopes are it can be used on other satellites."

The three CubeSat satellites will be attached to the Taurus XL rocket in a mechanical system known as a PPOD developed by the California Polytechnic State University in partnership with Stanford University. Once the rocket reaches about 385 miles high, the satellites will be ejected from the PPOD and will spring off into separate orbits, said Doyle.

The CU-Boulder satellite will be in contact with a COSGC ground station atop the Discovery Learning Center at the CU-Boulder engineering college. A second ground station is being built by the COSGC students in Longmont, about 15 miles northeast of Boulder, to monitor the high-speed communications data system, said Doyle.

"We are all really excited for launch," said Doyle. "We are now in our final push to test the communication sequence system and to finish our environmental testing, which includes vibration and vacuum chamber tests to verify that the satellite can survive in orbit."

Doyle said that when she got to CU-Boulder she was surprised to discover undergraduates had regular opportunities to design, build, test and fly spacecraft. "A number of students in my classes were talking about building satellites, so I decided to see what it was all about. That's when I came into the Colorado Space Grant Consortium," she said.

"This has been an incredible experience for me," said Doyle. "We learn from other CU students who are working on other space projects and who have experience in the kinds of research we are doing with Hermes. This is a great opportunity for students like me who want to work in the aerospace industry after college."

COSGC provides Colorado higher education students access to space through innovative courses, real-world, hands-on space hardware and satellite programs. The students interact with engineers and scientists from NASA and aerospace companies to develop, test and fly new space technologies on high-altitude balloons, sounding rockets and orbiting satellites.

Of the 52 space grant consortiums in the United States, Colorado's has been active in designing, building and flying 10 sounding rocket payloads, three space shuttle payloads, a satellite and hundreds of balloon experiments in the past 20 years, Koehler said.

For more information on COSGC visit: http://spacegrant.colorado.edu/.

Chris Koehler | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>