Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unique THz “Fingerprints” Will Identify Hidden Explosives from a Distance

A major breakthrough in remote wave sensing by a team of Rensselaer Polytechnic Institute researchers opens the way for detecting hidden explosives, chemical or biological agents, and illegal drugs from a distance of 20 meters.

The new all-optical system, using terahertz (THz) wave technology, has great potential for homeland security and military uses because it can “see through” clothing and packaging materials and can identify immediately the unique THz “fingerprints” of any hidden materials.

Terahertz waves occupy a large segment of the electromagnetic spectrum between the infrared and microwave bands, which can provide imaging and sensing technologies not available through conventional technologies such as X-ray and microwave.

“The potential of THz wave remote sensing has been recognized for years, but practical application has been blocked by the fact that ambient moisture interferes with wave transmission,” said Xi-Cheng Zhang, director of the Center for THz Research at Rensselaer.

Zhang, the J. Erik Jonsson Professor of Science at Rensselaer, is lead author of a paper to be published next week in the journal Nature Photonics. Titled “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” the paper describes the new system in detail.

The “all-optical” technique for remote THz sensing uses laser-induced fluorescence, essentially focusing two laser beams together into the air to remotely create a plasma that interacts with a generated THz wave. The plasma fluorescence carries information from a target material to a detector where it is instantly compared with material spectrum in the THz “library,” making possible immediate identification of a target material.

“We have shown that you can focus an 800 nm laser beam and a 400 nm laser beam together into the air to remotely create a plasma interacting with the THz wave, and use the plasma fluorescence to convey the information of the THz wave back to the local detector,” said Zhang.

Repeated terrorist threats and the thwarted Christmas Eve bombing attempt aboard a Northwest Airlines flight heightened interest in developing THz remote sensing capabilities, especially from Homeland Security and the Defense Department, which have funded much of the Rensselaer research.

Because THz radiation transmits through almost anything that is not metal or liquid, the waves can “see” through most materials that might be used to conceal explosives or other dangerous materials, such as packaging, corrugated cardboard, clothing, shoes, backpacks, and book bags.

Unlike X-rays, THz radiation poses little or no health threat. However, the technique cannot detect materials that might be concealed in body cavities.

“Our technology would not work for owners of an African diamond mine who are interested in the system to stop workers from smuggling out diamonds by swallowing them,” Zhang said.

Though most of the research has been conducted in a laboratory setting, the technology is portable and eventually could be used to check out backpacks or luggage abandoned in an airport for explosives, other dangerous materials, or for illegal drugs. On battlefields, it could detect where explosives are hidden.

The fact that each substance has its own unique THz “fingerprint” will show exactly what compound or compounds are being hidden, a capability that is expected to have multiple important and unexpected uses. In the event of a chemical spill, for instance, remote sensing could identify the composition of the toxic mix. Since sensing is remote, no individuals will be needlessly endangered.

“I think I can predict that, within a few years, the THz science and technology will become more available and ready for industrial and defense-related use,” Zhang said.

Co-authors of the Nature Photonics paper are Rensselaer’s Jingle Liu, Research Associate Professor Jianming Dai, and Professor See-Leang Chin of Quebec’s University of Laval.

Contact: Mark Marchand, Rensselaer Polytechnic Institute, (518) 276-6098, or

Marshall Hoffman, (703) 533-3535, (703) 801-8602 (mobile),

This news release is based on the article in Nature Photonics and available here:

Mark Marchand | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Did you know that specialty light sources are being used for water analysis?
22.03.2018 | Heraeus Noblelight GmbH

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>