Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Researchers Reveal Mechanism of Novel Biological Electron Transfer

20.03.2013
When researchers at the University of Massachusetts Amherst led by microbiologist Derek Lovley discovered that the bacterium Geobacter sulfurreducens conducts electricity very effectively along metallic-like “microbial nanowires,” they found physicists quite comfortable with the idea of such a novel biological electron transfer mechanism, but not biologists.
“For biologists, Geobacter’s behavior represents a paradigm shift. It goes against all that we are taught about biological electron transfer, which usually involves electrons hopping from one molecule to another,” Lovley says. “So it wasn’t enough for us to demonstrate that the microbial nanowires are conductive and to show with physics the conduction mechanism, we had to determine the impact of this conductivity on the biology.”

“We have now identified key components that make these hair-like pili we call nanowires conductive and have demonstrated their importance in the biological electron transport. This time we relied more on genetics. I think most biologists are more comfortable with genetics rather than physics,” Lovley adds.

“From my perspective, this is huge. It really clinches a big question. We overturned the major objection the biologists were making and confirmed the assumption in our earlier work, that real metallic-like conductivity is taking place.”

Findings are described in an early online issue of mBio, the open-access journal of the American Society for Microbiology. In addition to Lovley, the UMass Amherst team includes first author Madeline Vargas, with Nikhil Malvankar, Pier-Luc Tremblay, Ching Leang, Jessica Smith, Pranav Patel, Oona Snoeyenbos-West and Kelly Nevin.

In 2011, Lovely’s group discovered a fundamental, previously unknown property of pili in Geobacter. They found that electrons are transported along the pili via the same metallic-like conductivity found in synthetic organic materials used in electronics. Electrons are conducted over remarkable distances, thousands of times the cell’s length. But exactly how the pili accomplished this wasn’t clear.

They knew that the conductivity of synthetic conducting organic materials can be attributed to aromatic ringed structures which share electrons, suspended in a kind of a cloud that allows the overlapping electrons to easily flow. It seemed possible that amino acids, which have similar aromatic rings, might serve the same function in biological protein structures like pili. Lovley’s team looked for likely aromatic amino acid targets and then substituted non-aromatic amino acids for the aromatic ones to see if this reduced the conductivity of the pili.

It worked. The re-engineered pili with non-aromatic compounds substituted for aromatic ones looked perfect and unchanged under a microscope, but now they no longer functioned as wires. “This new strain is really bad at what Geobacter does best,” Lovley says. “Geobacter is known for its ability to grow on iron minerals and for generating electric current in microbial fuel cells, but without conductive pili those capabilities are greatly diminished.”

“What we did is equivalent to pulling the copper out of an extension cord,” he adds. “The cord looks the same, but it can’t conduct electricity anymore.”

The ability of protein filaments to conduct electrons in this way not only has ramifications for scientists’ basic understanding of natural microbial processes but practical implications for environmental cleanup and the development of renewable energy sources as well, he adds. Lovley’s UMass Amherst lab has already been working with federal agencies and industry to use Geobacter to clean up groundwater contaminated with radioactive metals or petroleum and to power electronic monitoring devices with current generated by Geobacter.

His group has also recently shown that Geobacter uses its nanowires to feed electrons to other microorganisms that can produce methane gas. This is an important step in the conversion of organic wastes to methane, which can then be burned to produce electricity.

As more states, including national leader Massachusetts, pass laws to prevent hospitals, universities, hotels and large restaurants from disposing of food waste in landfills, Geobacter’s role in producing methane could be part of the solution for how to deal with this waste. The Massachusetts law goes into effect in 2014. “Waste to methane is a well developed green energy strategy in Europe and is almost certain to become more important here in Massachusetts in the near future,” Lovley notes.

Funding for this work was from the U.S. Office of Naval Research and the Department of Energy.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>