Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Ultracapacitor Delivers a Jolt of Energy at a Constant Voltage

20.07.2012
Chemical batteries power many different mobile electronic devices, but repeated charging and discharging cycles can wear them out.

An alternative energy storage device called an ultracapacitor can be recharged hundreds of thousands of times without degrading, but ultracapacitors have their own disadvantages, including a voltage output that drops precipitously as the device is discharged. Now a researcher from the University of West Florida has designed an ultracapacitor that maintains a near steady voltage.

The novel constant-voltage design, which may one day help ultracapacitors find new uses in low-voltage electric vehicle circuits and handheld electronics, is described in the American Institute of Physics’ Journal of Renewable and Sustainable Energy.

Standard capacitors store energy in an electric field created when opposite electrical charges collect on two plates separated by a thin insulating material. In ultracapacitors the surface area of the plates is increased with a coating of porous activated carbon, which is packed with tiny holes and cracks that can capture charged particles. The space between the plates is filled with an electrolyte solution containing positive and negative ions. As charge accumulates on the plates, they attract ions, creating a double-layer of stored energy.

In both standard capacitors and ultracapacitors, the voltage drops as the stored charge is released. Most electronic devices, however, require constant voltage to operate. An electronic circuit called a DC-DC converter can change the dropping voltage of the capacitor into a constant voltage output, but the converters experience problems below one volt.

“A significant portion of the energy of the ultracapacitor is held below one volt,” notes Ezzat Bakhoum, a professor of electrical engineering at the University of West Florida. “Operation in that region is very difficult because the DC-DC converter cannot function at such low voltage. Applications where the use of an ultracapacitor is precluded because of this problem include low-voltage systems in electric vehicles, hand-held power tools, toys, and cameras, just to name a few.”

So Bakhoum has designed an ultracapacitor that maintains a near-constant voltage without a DC-DC converter. The ultracapacitor is fitted with an electromechanical system that can slowly lift the core of the device out of the electrolyte solution as the stored charged is released. As the electrolyte drains away, the device can hold less charge, thus lowering, its capacitance. Since the voltage of the capacitor is related to the ratio of the stored charge to the capacitance, the system maintains a steady voltage as charge is siphoned off.

Bakhoum built and tested a prototype of the new ultracapacitor. After attaching a 35-watt load to the device, he found he could successfully program the voltage to stay within a 4.9 to 4.6 volt range. Testing also showed that the constant-voltage mechanism operates with a 99 percent efficiency or higher. The lifetime of the electromechanical motor is expected to be about the same as the lifetime of the ultracapacitor’s core, Bakhoum writes.

“The ultracapacitor is a wonderful new energy storage device that has many advantages by comparison with batteries,” says Bakhoum. In addition to their near limitless ability to be recharged, ultracapacitors can release a jolt of energy much more quickly than batteries. One current disadvantage of commercially available ultracapacitors, that they store only a fraction of the energy per unit mass that batteries store, is a challenge that is still being researched. Some groups have experimented, for example, with changing the structure of the electrode to increase surface area, and thus the amount of charge that can be stored.

For Bakhoum, future research steps include modifying the design of the constant-voltage ultracapacitor system so that it can be installed at any angle. He may also explore whether the same type of constant-voltage approach is suitable for new, high-energy-density ultracapacitors.

Paper: “Constant Voltage Ultracapacitor”
Link: http://jrse.aip.org/resource/1/jrsebh/v4/i3/p033116_s1
Journal: Journal of Renewable and Sustainable Energy
Author: Ezzat G. Bakhoum (1)
(1) University of West Florida

Catherine Meyers | Newswise Science News
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>