Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultimate Surge Protector

18.06.2010
On Aug. 14, 2003, more than 40 million people were plunged into darkness when electrical service failed in large portions of the Northeastern and Midwestern United States and Ontario, Canada. Though many workplaces ceased functioning without electricity, New York City’s emergency medical services had to deal with a doubling of call volume during the 29-hour blackout, according to a 2006 report in Prehospital and Disaster Medicine.

Cardiac and respiratory complaints increased, likely due to commuters being left without subway transportation or elevators, according to the report. Paramedics responded to a large number of heat-related medical calls because air conditioners could not function. Ambulances struggled to navigate streets that lacked functioning traffic signals and were crowded with commuters walking home.

The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) is supporting a technological advance that could reduce the chances of similar blackouts occurring in the future. The Directorate’s Homeland Security Advanced Research Projects Agency (HSARPA) helped fund the development of an electrical cable that could be used to link substations, providing backup sources of electricity in the event part of the grid experiences an outage. The Resilient Electric Grid project will help ensure the nation’s utilities can withstand power surges that cause blackouts.

According to Sarah Mahmood, program manager for HSARPA, electric utilities have hesitated to connect substations in the past. Although one substation can compensate for another’s outage if the two are linked, there is a downside to building an interconnected grid. If an equipment failure, terrorist attack, or lightning strike causes a power surge, also known as a fault current, that fault current can cascade through the grid and knock out every substation and piece of equipment connected to the problem site. Part of the Resilient Electric Grid project is the development of a superconductor cable designed to suppress fault currents that can potentially cause permanent equipment damage. This technology will allow electric companies to link substations without running the risk of fault currents cascading through the electric grid. “This will help [first responders] by keeping that backbone [of the electric grid] up and running,” Mahmood said.

In 2007, HSARPA awarded a contract to American Superconductor Corporation to develop an inherently fault-current limiting high-temperature superconductor cable (IFCL-HTS), also known as Secure Super Grids, which was the first of its kind. A superconductor offers no resistance to electricity flowing through it, thus eliminating power loss incurred with regular wires. In order to do this, however, the superconductor must be super cooled to -460°F. According to Jason Fredette, director of corporate communications for American Superconductor, when a large fault current travels through the grid, the superconductor cable heats up and stops conducting, effectively suppressing the power surge. “The wire itself can act as a smart switch,” Fredette said.

What makes IFCL-HTS cable unique is that it operates at a higher temperature than traditional superconductors, -320°F, which makes it more practical for use. American Superconductor and its partner Southwire Company developed a 25-meter IFCL-HTS cable that was tested at Oak Ridge National Laboratory (ORNL) in 2009. According to Dr. Christopher Rey, senior staff scientist at ORNL, the lab plans to test an improved version in the near future.

In addition to preventing surges, the IFCL-HTS cable can improve electrical service to dense urban areas, according to David Lindsay, director for distribution engineering at Southwire Company. Superconductor cables can carry up to 10 times more electricity than a typical copper cable, and superconductor cables transmit electricity with near zero resistance. The added capacity and efficiency is useful for large cities such as New York, where electricity demand is rising and underground space to run additional cables is limited.

The fault current-limiting superconductor cables are best suited for urban markets, according to Lindsay. In rural areas, he explained, it would likely be more affordable to use overhead power lines and other solutions to suppress power surges. As developmental testing of the cable concludes, HSARPA will explore the possibility of installing the IFCL-HTS technology in a selected location in the electric grid for an operational demonstration, according to Mahmood.

Another aspect of DHS’s Resilient Electric Grid project focuses on developing a stand alone fault current-limiting device that can be installed anywhere on the existing electric grid, according to Mahmood. DHS is collaborating with Silicon Power to develop a Solid State Current Limiter. A semiconductor switch in the device suppresses power surges in electric cables. The technology would allow utilities to incorporate surge protector capabilities into the infrastructure without replacing current cables or existing protection schemes. DHS is scheduled to hold a demonstration of that technology’s key elements at the KEMA, Inc. testing facility in Chalfont, Penn. in the fall of 2010.

These solutions would protect critical infrastructure dependent on electrical power from blackouts that not only threaten safety, but commerce as well. Power outages cost the nation approximately $100 billion a year, according to HSARPA. Having a resilient electric grid will protect Wall Street and other financial centers from power outages, according to Fredette. “If New York City goes black, that damages our economy,” he said. “This project employs superconductor technology to protect our nation’s financial centers.”

For more information on HSARPA, visit www.dhs.gov/files/grants/gc_1247254578009.shtm. For more information on ORNL, visit www.ornl.gov.

The latest issue of the R-Tech Newsletter is posted at www.firstresponder.gov/Pages/NewsLetter.aspx . This link provides access to past issues of the newsletter, as well as the opportunity to subscribe to future issues.

The newsletter is part of the Department of Homeland Security Science and Technology Directorate’s First Responder Technologies (R-Tech) outreach program to federal, tribal, state, and local first responders. R-Tech’s mission is to protect America against terrorism, disasters, and all other hazards by providing first responder solutions for high priority capability gaps due to technology and assisting first responders through rapid prototyping, technical assistance and information sharing. For more information, please visit R-Tech’s Website, www.FirstResponder.gov.

John Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>