Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultimate Surge Protector

18.06.2010
On Aug. 14, 2003, more than 40 million people were plunged into darkness when electrical service failed in large portions of the Northeastern and Midwestern United States and Ontario, Canada. Though many workplaces ceased functioning without electricity, New York City’s emergency medical services had to deal with a doubling of call volume during the 29-hour blackout, according to a 2006 report in Prehospital and Disaster Medicine.

Cardiac and respiratory complaints increased, likely due to commuters being left without subway transportation or elevators, according to the report. Paramedics responded to a large number of heat-related medical calls because air conditioners could not function. Ambulances struggled to navigate streets that lacked functioning traffic signals and were crowded with commuters walking home.

The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) is supporting a technological advance that could reduce the chances of similar blackouts occurring in the future. The Directorate’s Homeland Security Advanced Research Projects Agency (HSARPA) helped fund the development of an electrical cable that could be used to link substations, providing backup sources of electricity in the event part of the grid experiences an outage. The Resilient Electric Grid project will help ensure the nation’s utilities can withstand power surges that cause blackouts.

According to Sarah Mahmood, program manager for HSARPA, electric utilities have hesitated to connect substations in the past. Although one substation can compensate for another’s outage if the two are linked, there is a downside to building an interconnected grid. If an equipment failure, terrorist attack, or lightning strike causes a power surge, also known as a fault current, that fault current can cascade through the grid and knock out every substation and piece of equipment connected to the problem site. Part of the Resilient Electric Grid project is the development of a superconductor cable designed to suppress fault currents that can potentially cause permanent equipment damage. This technology will allow electric companies to link substations without running the risk of fault currents cascading through the electric grid. “This will help [first responders] by keeping that backbone [of the electric grid] up and running,” Mahmood said.

In 2007, HSARPA awarded a contract to American Superconductor Corporation to develop an inherently fault-current limiting high-temperature superconductor cable (IFCL-HTS), also known as Secure Super Grids, which was the first of its kind. A superconductor offers no resistance to electricity flowing through it, thus eliminating power loss incurred with regular wires. In order to do this, however, the superconductor must be super cooled to -460°F. According to Jason Fredette, director of corporate communications for American Superconductor, when a large fault current travels through the grid, the superconductor cable heats up and stops conducting, effectively suppressing the power surge. “The wire itself can act as a smart switch,” Fredette said.

What makes IFCL-HTS cable unique is that it operates at a higher temperature than traditional superconductors, -320°F, which makes it more practical for use. American Superconductor and its partner Southwire Company developed a 25-meter IFCL-HTS cable that was tested at Oak Ridge National Laboratory (ORNL) in 2009. According to Dr. Christopher Rey, senior staff scientist at ORNL, the lab plans to test an improved version in the near future.

In addition to preventing surges, the IFCL-HTS cable can improve electrical service to dense urban areas, according to David Lindsay, director for distribution engineering at Southwire Company. Superconductor cables can carry up to 10 times more electricity than a typical copper cable, and superconductor cables transmit electricity with near zero resistance. The added capacity and efficiency is useful for large cities such as New York, where electricity demand is rising and underground space to run additional cables is limited.

The fault current-limiting superconductor cables are best suited for urban markets, according to Lindsay. In rural areas, he explained, it would likely be more affordable to use overhead power lines and other solutions to suppress power surges. As developmental testing of the cable concludes, HSARPA will explore the possibility of installing the IFCL-HTS technology in a selected location in the electric grid for an operational demonstration, according to Mahmood.

Another aspect of DHS’s Resilient Electric Grid project focuses on developing a stand alone fault current-limiting device that can be installed anywhere on the existing electric grid, according to Mahmood. DHS is collaborating with Silicon Power to develop a Solid State Current Limiter. A semiconductor switch in the device suppresses power surges in electric cables. The technology would allow utilities to incorporate surge protector capabilities into the infrastructure without replacing current cables or existing protection schemes. DHS is scheduled to hold a demonstration of that technology’s key elements at the KEMA, Inc. testing facility in Chalfont, Penn. in the fall of 2010.

These solutions would protect critical infrastructure dependent on electrical power from blackouts that not only threaten safety, but commerce as well. Power outages cost the nation approximately $100 billion a year, according to HSARPA. Having a resilient electric grid will protect Wall Street and other financial centers from power outages, according to Fredette. “If New York City goes black, that damages our economy,” he said. “This project employs superconductor technology to protect our nation’s financial centers.”

For more information on HSARPA, visit www.dhs.gov/files/grants/gc_1247254578009.shtm. For more information on ORNL, visit www.ornl.gov.

The latest issue of the R-Tech Newsletter is posted at www.firstresponder.gov/Pages/NewsLetter.aspx . This link provides access to past issues of the newsletter, as well as the opportunity to subscribe to future issues.

The newsletter is part of the Department of Homeland Security Science and Technology Directorate’s First Responder Technologies (R-Tech) outreach program to federal, tribal, state, and local first responders. R-Tech’s mission is to protect America against terrorism, disasters, and all other hazards by providing first responder solutions for high priority capability gaps due to technology and assisting first responders through rapid prototyping, technical assistance and information sharing. For more information, please visit R-Tech’s Website, www.FirstResponder.gov.

John Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>