Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultimate Surge Protector

18.06.2010
On Aug. 14, 2003, more than 40 million people were plunged into darkness when electrical service failed in large portions of the Northeastern and Midwestern United States and Ontario, Canada. Though many workplaces ceased functioning without electricity, New York City’s emergency medical services had to deal with a doubling of call volume during the 29-hour blackout, according to a 2006 report in Prehospital and Disaster Medicine.

Cardiac and respiratory complaints increased, likely due to commuters being left without subway transportation or elevators, according to the report. Paramedics responded to a large number of heat-related medical calls because air conditioners could not function. Ambulances struggled to navigate streets that lacked functioning traffic signals and were crowded with commuters walking home.

The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) is supporting a technological advance that could reduce the chances of similar blackouts occurring in the future. The Directorate’s Homeland Security Advanced Research Projects Agency (HSARPA) helped fund the development of an electrical cable that could be used to link substations, providing backup sources of electricity in the event part of the grid experiences an outage. The Resilient Electric Grid project will help ensure the nation’s utilities can withstand power surges that cause blackouts.

According to Sarah Mahmood, program manager for HSARPA, electric utilities have hesitated to connect substations in the past. Although one substation can compensate for another’s outage if the two are linked, there is a downside to building an interconnected grid. If an equipment failure, terrorist attack, or lightning strike causes a power surge, also known as a fault current, that fault current can cascade through the grid and knock out every substation and piece of equipment connected to the problem site. Part of the Resilient Electric Grid project is the development of a superconductor cable designed to suppress fault currents that can potentially cause permanent equipment damage. This technology will allow electric companies to link substations without running the risk of fault currents cascading through the electric grid. “This will help [first responders] by keeping that backbone [of the electric grid] up and running,” Mahmood said.

In 2007, HSARPA awarded a contract to American Superconductor Corporation to develop an inherently fault-current limiting high-temperature superconductor cable (IFCL-HTS), also known as Secure Super Grids, which was the first of its kind. A superconductor offers no resistance to electricity flowing through it, thus eliminating power loss incurred with regular wires. In order to do this, however, the superconductor must be super cooled to -460°F. According to Jason Fredette, director of corporate communications for American Superconductor, when a large fault current travels through the grid, the superconductor cable heats up and stops conducting, effectively suppressing the power surge. “The wire itself can act as a smart switch,” Fredette said.

What makes IFCL-HTS cable unique is that it operates at a higher temperature than traditional superconductors, -320°F, which makes it more practical for use. American Superconductor and its partner Southwire Company developed a 25-meter IFCL-HTS cable that was tested at Oak Ridge National Laboratory (ORNL) in 2009. According to Dr. Christopher Rey, senior staff scientist at ORNL, the lab plans to test an improved version in the near future.

In addition to preventing surges, the IFCL-HTS cable can improve electrical service to dense urban areas, according to David Lindsay, director for distribution engineering at Southwire Company. Superconductor cables can carry up to 10 times more electricity than a typical copper cable, and superconductor cables transmit electricity with near zero resistance. The added capacity and efficiency is useful for large cities such as New York, where electricity demand is rising and underground space to run additional cables is limited.

The fault current-limiting superconductor cables are best suited for urban markets, according to Lindsay. In rural areas, he explained, it would likely be more affordable to use overhead power lines and other solutions to suppress power surges. As developmental testing of the cable concludes, HSARPA will explore the possibility of installing the IFCL-HTS technology in a selected location in the electric grid for an operational demonstration, according to Mahmood.

Another aspect of DHS’s Resilient Electric Grid project focuses on developing a stand alone fault current-limiting device that can be installed anywhere on the existing electric grid, according to Mahmood. DHS is collaborating with Silicon Power to develop a Solid State Current Limiter. A semiconductor switch in the device suppresses power surges in electric cables. The technology would allow utilities to incorporate surge protector capabilities into the infrastructure without replacing current cables or existing protection schemes. DHS is scheduled to hold a demonstration of that technology’s key elements at the KEMA, Inc. testing facility in Chalfont, Penn. in the fall of 2010.

These solutions would protect critical infrastructure dependent on electrical power from blackouts that not only threaten safety, but commerce as well. Power outages cost the nation approximately $100 billion a year, according to HSARPA. Having a resilient electric grid will protect Wall Street and other financial centers from power outages, according to Fredette. “If New York City goes black, that damages our economy,” he said. “This project employs superconductor technology to protect our nation’s financial centers.”

For more information on HSARPA, visit www.dhs.gov/files/grants/gc_1247254578009.shtm. For more information on ORNL, visit www.ornl.gov.

The latest issue of the R-Tech Newsletter is posted at www.firstresponder.gov/Pages/NewsLetter.aspx . This link provides access to past issues of the newsletter, as well as the opportunity to subscribe to future issues.

The newsletter is part of the Department of Homeland Security Science and Technology Directorate’s First Responder Technologies (R-Tech) outreach program to federal, tribal, state, and local first responders. R-Tech’s mission is to protect America against terrorism, disasters, and all other hazards by providing first responder solutions for high priority capability gaps due to technology and assisting first responders through rapid prototyping, technical assistance and information sharing. For more information, please visit R-Tech’s Website, www.FirstResponder.gov.

John Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Power and Electrical Engineering:

nachricht Summer heat for the winter
10.01.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors
10.01.2017 | University of Illinois College of Engineering

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>