Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers demonstrate fully printed carbon nanotube transistor circuits for displays

01.12.2011
Since the invention of liquid crystal displays in the mid-1960s, display electronics have undergone rapid transformation. Recently developed organic light-emitting diodes (OLEDs) have shown several advantages over LCDs, including their light weight, flexibility, wide viewing angles, improved brightness, high power efficiency and quick response.

OLED-based displays are now used in cell phones, digital cameras and other portable devices. But developing a lower-cost method for mass-producing such displays has been complicated by the difficulties of incorporating thin-film transistors that use amorphous silicon and polysilicon into the production process.

Now, researchers from Aneeve Nanotechnologies, a startup company at UCLA's on-campus technology incubator at the California NanoSystems Institute (CNSI), have used low-cost ink-jet printing to fabricate the first circuits composed of fully printed back-gated and top-gated carbon nanotube–based electronics for use with OLED displays. The research was published this month in the journal Nano Letters.

The startup includes collaborators from the departments of materials science and electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science and the department of electrical engineering at the University of Southern California.

In this innovative study, the team made carbon nanotube thin-film transistors with high mobility and a high on–off ratio, completely based on ink-jet printing. They demonstrated the first fully printed single-pixel OLED control circuits, and their fully printed thin-film circuits showed significant performance advantages over traditional organic-based printed electronics.

"This is the first practical demonstration of carbon nanotube–based printed circuits for display backplane applications," said Kos Galatsis, an associate adjunct professor of materials science at UCLA Engineering and a co-founder of Aneeve. "We have demonstrated carbon nanotubes' viable candidacy as a competing technology alongside amorphous silicon and metal-oxide semiconductor solution as a low-cost and scalable backplane option."

This distinct process utilizes an ink-jet printing method that eliminates the need for expensive vacuum equipment and lends itself to scalable manufacturing and roll-to-roll printing. The team solved many material integration problems, developed new cleaning processes and created new methods for negotiating nano-based ink solutions.

For active-matrix OLED applications, the printed carbon nanotube transistors will be fully integrated with OLED arrays, the researchers said. The encapsulation technology developed for OLEDs will also keep the carbon nanotube transistors well protected, as the organics in OLEDs are very sensitive to oxygen and moisture.

The technology incubator at the CNSI was established two years ago to nurture early-stage research and to help speed the commercial translation of technologies developed at UCLA. Aneeve Nanotechnologies LLC has been conducting proof-of-concept work at the tech incubator with the mission of developing superior, low-cost, high-performance electronics using nanotechnology solutions that bridge the gap between emerging and traditional platforms.

The California NanoSystems Institute is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. The total amount of research funding in nanoscience and nanotechnology awarded to CNSI members has risen to over $900 million. UCLA CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>