Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA engineers develop a stretchable, foldable transparent electronic display

24.09.2013
Imagine an electronic display nearly as clear as a window, or a curtain that illuminates a room, or a smartphone screen that doubles in size, stretching like rubber. Now imagine all of these being made from the same material.

Researchers from UCLA's Henry Samueli School of Engineering and Applied Science have developed a transparent, elastic organic light-emitting device, or OLED, that could one day make all these possible. The OLED can be repeatedly stretched, folded and twisted at room temperature while still remaining lit and retaining its original shape.

OLED technology is used today in screens for many smartphones and some televisions. The new ultra-stretchable OLED material developed at UCLA could lead to foldable and expandable screens for new classes of smartphones and other personal electronic devices; electronics-integrated clothing; wallpaper-like lighting; new minimally invasive medical tools; and many other applications.

"Our new material is the building block for fully stretchable electronics for consumer devices," said Qibing Pei, a UCLA professor of materials science and engineering and principal investigator on the research. "Along with the development of stretchable thin-film transistors, we believe that fully stretchable interactive OLED displays that are as thin as wallpaper will be achieved in the near future. And this will give creative electronics designers new dimensions to exploit."

The research is published online in the peer-reviewed journal Nature Photonics. The lead author of the study is Jiajie Liang, a postdoctoral scholar in Pei's Soft Materials Research Laboratory at UCLA.

The researchers stretched and restretched the OLED 1,000 times, extending it 30 percent beyond its original shape and size, and it still continued to work at a high efficiency. In another test to determine the material's maximum stretch, the researchers found it could be stretched to more than twice its original size while still functioning. In addition, it can be folded 180 degrees and can be twisted in multiple directions.

The material has a single layer of an electro-luminescent polymer blend sandwiched between a pair of new transparent elastic composite electrodes. These electrodes are made of a network of silver nanowires inlaid into a rubbery polymer, which allows the device to be used at room temperatures. All of these layers are fully stretchable, foldable and twistable. The new material can also be fabricated in a relatively simple all-solution–based process.

"The lack of suitable elastic transparent electrodes is one of the major obstacles to the fabrication of stretchable display," Liang said. "Our new transparent, elastic composite electrode has high visual transparency, good surface electrical conductivity, high stretchability and high surface smoothness — all features essential to the fabrication of the stretchable OLED."

The team also demonstrated this ultra-flexible OLED could contain multiple pixels, rather than just a solid block of light. This could pave the way for electronic displays comprising many thousands of pixels. They accomplished this by assembling the silver nanowire–based electrodes into a cross-hatched pattern, with one layer of columns and one layer of rows.

"While we perceive a bright future where information and lighting are provided in various thin, stretchable or conformable form factors, or are invisible when not needed, there are still major technical challenges," Pei said. "This includes how to seal these materials that are otherwise sensitive to air. Researchers around the world are racing the clock tackling the obstacles. We are confident that we will get there and introduce a number of cool products along the way."

Pei is also a member of the California NanoSystems Institute (CNSI) at UCLA.

Other authors of the study include Lu Li, a UCLA postdoctoral scholar; UCLA engineering graduate student Xiaofan Niu; and Zhibin Yu, a former UCLA doctoral student and postdoctoral scholar who is now a postdoctoral scholar at UC Berkeley.

The research was funded by the National Science Foundation and the Air Force Office of Scientific Research.

Matthew Chin | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>