Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago-Argonne National Lab Team Improves Solar-Cell Efficiency

22.09.2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago’s chemistry department, the Institute for Molecular Engineering, and Argonne National Laboratory.

Researchers identified a new polymer — a type of large molecule that forms plastics and other familiar materials — which improved the efficiency of solar cells. The group also determined the method by which the polymer improved the cells’ efficiency. The polymer allowed electrical charges to move more easily throughout the cell, boosting the production of electricity — a mechanism never before demonstrated in such devices.


Andrew Nelles

This polymer solar cell consists of a new polymer, called PID2, which was developed in the laboratory of Luping Yu, professor in chemistry at the University of Chicago. The new polymer improves the efficiency of electrical power generation by 15 percent when added to a standard polymer-fullerene mixture.

“Polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy,” said Luyao Lu, graduate student in chemistry and lead author of a paper describing the result, published online last month in the journal Nature Photonics.

Solar cells made from polymers are a popular topic of research due to their appealing properties. But researchers are still struggling to efficiently generate electrical power with these materials.

“The field is rather immature — it’s in the infancy stage,” said Luping Yu, professor in chemistry, fellow in the Institute for Molecular Engineering, who led the UChicago group carrying out the research.

The active regions of such solar cells are composed of a mixture of polymers that give and receive electrons to generate electrical current when exposed to light. The new polymer developed by Yu’s group, called PID2, improves the efficiency of electrical power generation by 15 percent when added to a standard polymer-fullerene mixture.

“Fullerene, a small carbon molecule, is one of the standard materials used in polymer solar cells,” Lu said. “Basically, in polymer solar cells we have a polymer as electron donor and fullerene as electron acceptor to allow charge separation.” In their work, the UChicago-Argonne researchers added another polymer into the device, resulting in solar cells with two polymers and one fullerene.

8.2 percent efficiency

The group achieved an efficiency of 8.2 percent when an optimal amount of PID2 was added — the highest ever for solar cells made up of two types of polymers with fullerene— and the result implies that even higher efficiencies could be possible with further work. The group is now working to push efficiencies toward 10 percent, a benchmark necessary for polymer solar cells to be viable for commercial application.

The result was remarkable not only because of the advance in technical capabilities, Yu noted, but also because PID2 enhanced the efficiency via a new method. The standard mechanism for improving efficiency with a third polymer is by increasing the absorption of light in the device. But in addition to that effect, the team found that when PID2 was added, charges were transported more easily between polymers and throughout the cell.

In order for a current to be generated by the solar cell, electrons must be transferred from polymer to fullerene within the device. But the difference between electron energy levels for the standard polymer-fullerene is large enough that electron transfer between them is difficult. PID2 has energy levels in between the other two, and acts as an intermediary in the process.

“It’s like a step,” Yu said. “When it’s too high, it’s hard to climb up, but if you put in the middle another step then you can easily walk up.”

Thanks to a collaboration with Argonne, Yu and his group were also able to study the changes in structure of the polymer blend when PID2 was added, and show that these changes likewise improved the ability of charges to move throughout the cell, further improving the efficiency. The addition of PID2 caused the polymer blend to form fibers, which improve the mobility of electrons throughout the material. The fibers serve as a pathway to allow electrons to travel to the electrodes on the sides of the solar cell.

“It’s like you’re generating a street and somebody that’s traveling along the street can find a way to go from this end to another,” Yu said.

To reveal this structure, Wei Chen of the Materials Science Division at Argonne National Laboratory and the Institute for Molecular Engineering performed X-ray scattering studies using the Advanced Photon Source at Argonne and the Advanced Light Source at Lawrence Berkeley.

“Without that it’s hard to get insight about the structure,” Yu said, calling the collaboration with Argonne “crucial” to the work. “That benefits us tremendously,” he said.

Chen noted that “Working together, these groups represent a confluence of the best materials and the best expertise and tools to study them to achieve progress beyond what could be achieved with independent efforts.

“This knowledge will serve as a foundation from which to develop high-efficiency organic photovoltaic devices to meet the nation’s future energy needs,” Chen said.
— By Emily Conover

Steve Koppes | newswise

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>