Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers crack full-spectrum solar challenge

27.06.2011
In a paper published in Nature Photonics, U of T Engineering researchers report a new solar cell that may pave the way to inexpensive coatings that efficiently convert the sun's rays to electricity.

The U of T researchers, led by Professor Ted Sargent, report the first efficient tandem solar cell based on colloidal quantum dots (CQD). "The U of T device is a stack of two light-absorbing layers – one tuned to capture the sun's visible rays, the other engineered to harvest the half of the sun's power that lies in the infrared," said lead author Dr. Xihua Wang.

"We needed a breakthrough in architecting the interface between the visible and infrared junction," said Sargent, a Professor of Electrical and Computer Engineering at the University of Toronto, who is also the Canada Research Chair in Nanotechnology. "The team engineered a cascade – really a waterfall – of nanometers-thick materials to shuttle electrons between the visible and infrared layers."

According to doctoral student Ghada Koleilat, "We needed a new strategy – which we call the Graded Recombination Layer – so that our visible and infrared light-harvesters could be linked together efficiently, without any compromise to either layer."

The team pioneered solar cells made using CQD, nanoscale materials that can readily be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves – wider than normal solar cells – tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency. The work expands the Toronto team's world-leading 5.6 per cent efficient colloidal quantum dot solar cells.

"Building efficient, cost-effective solar cells is a grand global challenge. The University of Toronto is extremely proud of its world-class leadership in the field," said Professor Farid Najm, Chair of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering.

Sargent is hopeful that in five years solar cells using the graded recombination layer published in today's Nature Photonics paper will be integrated into building materials, mobile devices, and automobile parts.

"The solar community – and the world – needs a solar cell that is over 10% efficient, and that dramatically improves on today's photovoltaic module price points," said Sargent. "This advance lights up a practical path to engineering high-efficiency solar cells that make the best use of the diverse photons making up the sun's broad palette."

The publication was based in part on work supported by an award made by the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Equipment from Angstrom Engineering and Innovative Technology enabled the research.

To read the published paper in its entirety, please contact Takara Small, Communications & Media Relations Coordinator for the Faculty of Applied Science & Engineering, University of Toronto.

For more information, please contact:

Takara Small
Communications & Media Relations Coordinator
Faculty of Applied Science & Engineering, University of Toronto
416-946-7257 or cell 416-985-6839 | takara@ecf.utoronto.ca

Takara Small | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

nachricht Molecular switch will facilitate the development of pioneering electro-optical devices
24.05.2018 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>