Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers crack full-spectrum solar challenge

27.06.2011
In a paper published in Nature Photonics, U of T Engineering researchers report a new solar cell that may pave the way to inexpensive coatings that efficiently convert the sun's rays to electricity.

The U of T researchers, led by Professor Ted Sargent, report the first efficient tandem solar cell based on colloidal quantum dots (CQD). "The U of T device is a stack of two light-absorbing layers – one tuned to capture the sun's visible rays, the other engineered to harvest the half of the sun's power that lies in the infrared," said lead author Dr. Xihua Wang.

"We needed a breakthrough in architecting the interface between the visible and infrared junction," said Sargent, a Professor of Electrical and Computer Engineering at the University of Toronto, who is also the Canada Research Chair in Nanotechnology. "The team engineered a cascade – really a waterfall – of nanometers-thick materials to shuttle electrons between the visible and infrared layers."

According to doctoral student Ghada Koleilat, "We needed a new strategy – which we call the Graded Recombination Layer – so that our visible and infrared light-harvesters could be linked together efficiently, without any compromise to either layer."

The team pioneered solar cells made using CQD, nanoscale materials that can readily be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves – wider than normal solar cells – tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency. The work expands the Toronto team's world-leading 5.6 per cent efficient colloidal quantum dot solar cells.

"Building efficient, cost-effective solar cells is a grand global challenge. The University of Toronto is extremely proud of its world-class leadership in the field," said Professor Farid Najm, Chair of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering.

Sargent is hopeful that in five years solar cells using the graded recombination layer published in today's Nature Photonics paper will be integrated into building materials, mobile devices, and automobile parts.

"The solar community – and the world – needs a solar cell that is over 10% efficient, and that dramatically improves on today's photovoltaic module price points," said Sargent. "This advance lights up a practical path to engineering high-efficiency solar cells that make the best use of the diverse photons making up the sun's broad palette."

The publication was based in part on work supported by an award made by the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Equipment from Angstrom Engineering and Innovative Technology enabled the research.

To read the published paper in its entirety, please contact Takara Small, Communications & Media Relations Coordinator for the Faculty of Applied Science & Engineering, University of Toronto.

For more information, please contact:

Takara Small
Communications & Media Relations Coordinator
Faculty of Applied Science & Engineering, University of Toronto
416-946-7257 or cell 416-985-6839 | takara@ecf.utoronto.ca

Takara Small | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>