Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers crack full-spectrum solar challenge

27.06.2011
In a paper published in Nature Photonics, U of T Engineering researchers report a new solar cell that may pave the way to inexpensive coatings that efficiently convert the sun's rays to electricity.

The U of T researchers, led by Professor Ted Sargent, report the first efficient tandem solar cell based on colloidal quantum dots (CQD). "The U of T device is a stack of two light-absorbing layers – one tuned to capture the sun's visible rays, the other engineered to harvest the half of the sun's power that lies in the infrared," said lead author Dr. Xihua Wang.

"We needed a breakthrough in architecting the interface between the visible and infrared junction," said Sargent, a Professor of Electrical and Computer Engineering at the University of Toronto, who is also the Canada Research Chair in Nanotechnology. "The team engineered a cascade – really a waterfall – of nanometers-thick materials to shuttle electrons between the visible and infrared layers."

According to doctoral student Ghada Koleilat, "We needed a new strategy – which we call the Graded Recombination Layer – so that our visible and infrared light-harvesters could be linked together efficiently, without any compromise to either layer."

The team pioneered solar cells made using CQD, nanoscale materials that can readily be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves – wider than normal solar cells – tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency. The work expands the Toronto team's world-leading 5.6 per cent efficient colloidal quantum dot solar cells.

"Building efficient, cost-effective solar cells is a grand global challenge. The University of Toronto is extremely proud of its world-class leadership in the field," said Professor Farid Najm, Chair of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering.

Sargent is hopeful that in five years solar cells using the graded recombination layer published in today's Nature Photonics paper will be integrated into building materials, mobile devices, and automobile parts.

"The solar community – and the world – needs a solar cell that is over 10% efficient, and that dramatically improves on today's photovoltaic module price points," said Sargent. "This advance lights up a practical path to engineering high-efficiency solar cells that make the best use of the diverse photons making up the sun's broad palette."

The publication was based in part on work supported by an award made by the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Equipment from Angstrom Engineering and Innovative Technology enabled the research.

To read the published paper in its entirety, please contact Takara Small, Communications & Media Relations Coordinator for the Faculty of Applied Science & Engineering, University of Toronto.

For more information, please contact:

Takara Small
Communications & Media Relations Coordinator
Faculty of Applied Science & Engineering, University of Toronto
416-946-7257 or cell 416-985-6839 | takara@ecf.utoronto.ca

Takara Small | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>