Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M discovery to improve efficiencies in fuel, chemical and pharmaceutical industries

29.06.2012
Breakthrough could reduce costs for the consumer

University of Minnesota engineering researchers are leading an international team that has made a major breakthrough in developing a catalyst used during chemical reactions in the production of gasoline, plastics, biofuels, pharmaceuticals, and other chemicals. The discovery could lead to major efficiencies and cost-savings in these multibillion-dollar industries.

The research is to be published in the June 29, 2012 issue of the leading scientific journal Science.

"The impact of this new discovery is enormous," said the team's lead researcher Michael Tsapatsis, a chemical engineering and materials science professor in the University of Minnesota College of Science and Engineering. "Every drop of gasoline we use needs a catalyst to change the oil molecules into usable gasoline during the refining process."

This research improves efficiencies by giving molecules fast access to the catalysts where the chemical reactions occur. Tsapatsis compared it to our use of freeways and side streets in our daily lives.

"It's faster and more efficient to use freeways to get where we want to go and exit to do our business compared to driving the side streets the entire way," he explained. "The catalysts used today are more like all side streets. Molecules move slowly and get stuck. The efficiencies of these new catalysts could lower the costs of gasoline and other products for all of us."

The research team built their prototype of the new catalyst using highly optimized ultra-thin zeolite nanosheets. They used a unique process to encourage growth of these nanosheets at 90-degree angles, similar to building a house of cards. The house-of-cards arrangement of the nanosheets makes the catalyst faster, more selective and more stable, but can be made at the same cost (or possibly cheaper) than traditional catalysts.

With faster catalysts available at no extra cost to the producer, production per manufacturing dollar will increase. With a higher output, it is conceivable that consumer costs will drop.

This new discovery builds upon previous discoveries at the University of Minnesota of ultra-thin zeolite nanosheets used as specialized molecular sieves for production of both renewable and fossil-based fuels and chemicals. These discoveries, licensed by the new Minnesota start-up company Argilex Technologies, are key components of the company's materials-based platform. The development of the new catalyst is complete, and the material is ready for customer testing.

"This breakthrough can have a major impact on both the conversion of natural gas to higher value chemicals and fuels, and on bio- and petroleum refiners," said Cesar Gonzalez, CEO of Argilex Technologies. "Using catalysts made by this novel approach, refiners will be able to obtain a higher yield of desirable products such as gasoline, diesel, ethylene and propylene. At Argilex, we envision this catalyst technology platform to become a key contributor to efficient use of natural resources and improved economics of the world's largest industries."

Researchers on the team are from around the globe. In addition to the University of Minnesota, researchers are from institutions in Tokyo, Abu Dhabi, Korea and Sweden.

Primary funding for this research is from the U.S. Department of Energy's Center for Catalysis and Energy Innovation, an Energy Frontier Research Center. The University of Minnesota is a partner in this multi-institutional research center at the University of Delaware. Other funding for this research is from the National Science Foundation Emerging Frontiers in Research and Innovation Program, the University of Minnesota's Initiative for Renewable Energy and the Environment, and the Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE) partnership between the University of Minnesota and the Abu Dhabi Petroleum Institute.

Read the full research paper entitled "Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching," on the Science website: http://z.umn.edu/catalyst.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>