Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M discovery to improve efficiencies in fuel, chemical and pharmaceutical industries

29.06.2012
Breakthrough could reduce costs for the consumer

University of Minnesota engineering researchers are leading an international team that has made a major breakthrough in developing a catalyst used during chemical reactions in the production of gasoline, plastics, biofuels, pharmaceuticals, and other chemicals. The discovery could lead to major efficiencies and cost-savings in these multibillion-dollar industries.

The research is to be published in the June 29, 2012 issue of the leading scientific journal Science.

"The impact of this new discovery is enormous," said the team's lead researcher Michael Tsapatsis, a chemical engineering and materials science professor in the University of Minnesota College of Science and Engineering. "Every drop of gasoline we use needs a catalyst to change the oil molecules into usable gasoline during the refining process."

This research improves efficiencies by giving molecules fast access to the catalysts where the chemical reactions occur. Tsapatsis compared it to our use of freeways and side streets in our daily lives.

"It's faster and more efficient to use freeways to get where we want to go and exit to do our business compared to driving the side streets the entire way," he explained. "The catalysts used today are more like all side streets. Molecules move slowly and get stuck. The efficiencies of these new catalysts could lower the costs of gasoline and other products for all of us."

The research team built their prototype of the new catalyst using highly optimized ultra-thin zeolite nanosheets. They used a unique process to encourage growth of these nanosheets at 90-degree angles, similar to building a house of cards. The house-of-cards arrangement of the nanosheets makes the catalyst faster, more selective and more stable, but can be made at the same cost (or possibly cheaper) than traditional catalysts.

With faster catalysts available at no extra cost to the producer, production per manufacturing dollar will increase. With a higher output, it is conceivable that consumer costs will drop.

This new discovery builds upon previous discoveries at the University of Minnesota of ultra-thin zeolite nanosheets used as specialized molecular sieves for production of both renewable and fossil-based fuels and chemicals. These discoveries, licensed by the new Minnesota start-up company Argilex Technologies, are key components of the company's materials-based platform. The development of the new catalyst is complete, and the material is ready for customer testing.

"This breakthrough can have a major impact on both the conversion of natural gas to higher value chemicals and fuels, and on bio- and petroleum refiners," said Cesar Gonzalez, CEO of Argilex Technologies. "Using catalysts made by this novel approach, refiners will be able to obtain a higher yield of desirable products such as gasoline, diesel, ethylene and propylene. At Argilex, we envision this catalyst technology platform to become a key contributor to efficient use of natural resources and improved economics of the world's largest industries."

Researchers on the team are from around the globe. In addition to the University of Minnesota, researchers are from institutions in Tokyo, Abu Dhabi, Korea and Sweden.

Primary funding for this research is from the U.S. Department of Energy's Center for Catalysis and Energy Innovation, an Energy Frontier Research Center. The University of Minnesota is a partner in this multi-institutional research center at the University of Delaware. Other funding for this research is from the National Science Foundation Emerging Frontiers in Research and Innovation Program, the University of Minnesota's Initiative for Renewable Energy and the Environment, and the Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE) partnership between the University of Minnesota and the Abu Dhabi Petroleum Institute.

Read the full research paper entitled "Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching," on the Science website: http://z.umn.edu/catalyst.

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>