Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of I research seeks to improve sensors that monitor diesel fuel quality

27.07.2010
Sensors currently used to monitor the quality of diesel fuel and biodiesel blended fuels during engine operation are unable to adequately detect certain important fuel quality concerns.

Alan Hansen, professor of agricultural and biological engineering at the University of Illinois, and his colleagues are working to develop new technologies to improve these commercially-available sensors.

"Our research is contributing to the development of a sensor that, when placed in the fuel line prior to where the fuel enters a diesel engine, can detect if there are any contaminants in or other problems with the fuel," Hansen said. "Also, if biodiesel is used, the sensor would determine the quality and quantity of biodiesel entering the engine."

Biodiesel, a renewable fuel derived from natural oils like soybean oil, is typically blended at 2 to 5 percent with regular diesel fuel.

"In some cases, engine manufacturers will support warranties on engines using higher percentages of biodiesel—up to 20 percent. However, they are reluctant to support engines running too much biodiesel because there is some concern that it would affect the engine in a negative way," Hansen said.

Hansen is investigating the use of electrochemical sensors to detect contaminants and other quality issues that today's sensors are missing. By using electrochemical processes, the sensors are expected to be significantly more sensitive to the chemical composition of diesel fuel.

"Electrochemical sensors can be designed to detect specific chemicals, such as sulfur or sulfur-based compounds," he said. "One could then create a system to warn the operator or shut down the engine when the fuel has high sulfur content."

Sulfur is an important contaminant to monitor in diesel fuel, as it can contribute to the release of harmful exhaust emissions. Sulfur damages the catalysts in filters that are part of the engine's after-treatment system. Such filters are needed to comply with the Environmental Protection Agency's (EPA) strict regulations on emissions levels.

"To stay within the EPA's emissions limits, it is no longer possible to simply optimize the combustion process. We now have to capture some of the emissions after the engine, using filters or other methods," Hansen said.

Hansen also noted that when sulfur is involved in the combustion process, it creates sulfuric acid, which is a very corrosive by-product that can damage the engine.

"We've run tests to evaluate how well current sensors work with a range of different fuels, including biodiesel blends. The tests have shown us the limitations of the sensors," Hansen said. "If we can improve these sensors to successfully detect sulfur and monitor other diesel fuel quality concerns, it will be an important breakthrough."

LeAnn Ormsby | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>