Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning over a new leaf for future energy supplies

16.12.2008
German scientists suggest energy based on biomass is a realistic scenario

A global energy supply based on biomass grown to generate electricity and produce fuel is a real possibility. According to Prof. Jürgen O. Metzger from Carl von Ossietzky University of Oldenburg in Germany and Prof. Aloys Huettermann from the University of Goettingen in Germany, it is both a sustainable and economical scenario, contrary to current thinking which suggests it is unrealistic. Their findings are published online this week in Springer’s journal, Naturwissenschaften.

Fossil fuels including oil, natural gas and coal - which provide almost all of our global energy needs - will be completely exhausted in the next 75 years based on our current consumption levels, and most likely before then bearing in mind the increasing energy demand worldwide. What’s then? It is commonly assumed that the amount of biomass that can be grown on available land in competition to food is so limited that a scenario based on biomass as the major source of energy is unrealistic.

Metzger and Huettermann show that enough biomass can be grown on land previously degraded by human activities in historical times to meet the global energy demand predicted by the International Energy Agency in the Reference Scenario for 2030 – and what’s more, this energy can be produced both sustainably and economically.

The solution is to plant fast-growing trees on degraded areas, and harvest the biomass for energy usage.This afforestation would not compete with the need for arable land for food production. The authors argue that the investment required for afforestation and transformation of the biomass to electrical energy, heat, fuels and chemical feedstock is actually sustainable and not more, probably even less, than what would need to be invested in infrastructure for non-sustainable fossil energy. The continuous use of biomass as an energy source is also carbon neutral which means that the energetic usage produces not more CO2 as used for the growth of the respective biomass, thus slowing down and stopping the build-up of CO2 and even slowly reducing the CO2 content in the atmosphere. Their scenario would also have a number of additional advantages, including a convenient way of storing energy, regenerating the global water and especially drinking water resources and controlling soil degradation.

Other renewable energies, including solar, tidal and wind power will contribute to the energy mix, making the biomass scenario even more realistic. The authors do concede that new technologies will be required to convert the chemical energy stored in biomass to electrical energy more efficiently.

They add that “the scenario of afforestation for energy use will be an important step to realize the United Nations programs to combat desertification and deforestation, without additional costs.”

Joan Robinson | alfa
Further information:
http://www.springer.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>