Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Troublesome green algae serve as coating substrate in record-setting battery

14.09.2009
Unwanted blooms of Cladophora algae throughout the Baltic and in other parts of the world are not entirely without a positive side.

A group of researchers at the Ångström Laboratory at Uppsala University have discovered that the distinctive cellulose nanostructure of these algae can serve as an effective coating substrate for use in environmentally friendly batteries. The findings have been published in an article in Nano Letters.

"These algae has a special cellulose structure characterised by a very large surface area," says Gustav Nyström, a doctoral student in nanotechnology and the first author of the article. "By coating this structure with a thin layer of conducting polymer, we have succeeded in producing a battery that weighs almost nothing and that has set new charge-time and capacity records for polymer-cellulose-based batteries."

Despite extensive efforts in recent years to develop new cellulose-based coating substrates for battery applications, satisfactory charging performance proved difficult to obtain. However, nobody had tried using algal cellulose. Researcher Albert Mihranyan and Professor Maria Strømme at the Nanotechnology and Functional Materials Department of Engineering Sciences at the Ångström Laboratory had been investigating pharmaceutical applications of the cellulose from Cladophora algae for a number of years. This type of cellulose has a unique nanostructure, entirely different from that of terrestrial plants, that has been shown to function well as a thickening agent for pharmaceutical preparations and as a binder in foodstuffs. The possibility of energy-storage applications was raised in view of its large surface area.

"We have long hoped to find some sort of constructive use for the material from algae blooms and have now been shown this to be possible," says Maria Strømme, Professor in Nanotechnology and leader of the research group. "The battery research has a genuinely interdisciplinary character and was initiated in collaboration with chemist professor Leif Nyholm. Cellulose pharmaceutics experts, battery chemists and nanotechnologists have all played essential roles in developing the new material."

The article in Nano Letters, in effect, introduces an entirely new electrode material for energy storage applications, consisting of a nanostructure of algal cellulose coated with a 50 nm layer of polypyrrole. Batteries based on this material can store up to 600 mA per cm3, with only 6 per cent loss through 100 charging cycles.

"This creates new possibilities for large-scale production of environmentally friendly, cost-effective, lightweight energy storage systems," says Maria Strømme.

"Our success in obtaining a much higher charge capacity than was previously possible with batteries based on advanced polymers is primarily due to the extreme thinness of the polymer layer," says Gustav Nyström.

Maria Stromme | EurekAlert!
Further information:
http://www.uu.se

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>