Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming hydrogen into liquid fuel using atmospheric CO2

03.06.2014

EPFL scientists have completed their solution for transforming hydrogen gas into a less flammable liquid fuel that can be safely stored and transported

Hydrogen is often touted as the fuel of the future. But because this gas is highly explosive, it must be stored and transported under pressure in specialized and expensive containers. Hydrogen therefore has issues in terms of safety, logistics, and profitability that could significantly limit its wider use.

However, a solution might lie in research by EPFL scientists, who have developed a simple system based on two chemical reactions. The first reaction transforms hydrogen into formic acid, a liquid that is easy to store and less flammable than gasoline, while the second reaction does the reverse and restores the hydrogen.

Another possible application of their technology would be to use atmospheric CO2 to synthesize a number of useful chemical products.

Gabor Laurenczy's team has already developed a process for transforming formic acid into hydrogen gas. The method was the subject of several articles, one of which appeared in Science, and it is currently under industrial development.

But a complete and coherent system would also require the inverse process: transforming hydrogen into formic acid. This has now been achieved, completing the cycle, thanks to the financial support of EOS Holding. The scientists in Laurenczy's team have described the process in a Nature Communications article.

The researchers synthesized formic acid in a single step, starting with hydrogen and atmospheric CO2. Conventional methods to accomplish this involve several steps, which are complicated to carry out and generate undesirable chemical byproducts.

The two chemical reactions – hydrogen to formic acid and back to hydrogen - are catalytic: the advantage is that nothing is lost in the transformation, and the process can thus be used in constructing sustainable devices.

With their two catalytic reactions, the researchers now possess all the technology they need to build a complete, integrated device. Laurenczy envisions small energy storage units in which the current from photovoltaic cells produces hydrogen by electrolysis, which is then transformed and stored as formic acid, and finally transformed back into hydrogen to produce electricity at night-time. "Our procedure is simple enough that it can be implemented at the domestic level," he says.

Another possible application of this technology would be to use atmospheric CO2, a greenhouse gas, as a building-block for chemical synthesis. Formic acid is the basis of numerous organic syntheses, e.g. in the textile industry.

As Laurenczy explains: "We are killing two birds with one stone: we could sequester part of the 35 gigatons of CO2 that are emitted into the atmosphere every year, and also use it to synthesize materials."

Lionel Pousaz | Eurek Alert!
Further information:
http://www.epfl.ch

Further reports about: CO2 EOS Hydrogen Polytechnique acid catalytic explosive synthesize

More articles from Power and Electrical Engineering:

nachricht New high energy density automotive battery system from Fraunhofer IISB and international partners
25.08.2015 | Fraunhofer-Gesellschaft

nachricht New research may enhance display & LED lighting technology
10.08.2015 | University of Illinois College of Engineering

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

Im Focus: A Grand Voyage for Tiny Organisms

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants

27.08.2015 | Life Sciences

Hypoallergenic parks: Coming soon?

27.08.2015 | Health and Medicine

Stiffer breast tissue in obese women promotes tumors

27.08.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>