Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming hydrogen into liquid fuel using atmospheric CO2

03.06.2014

EPFL scientists have completed their solution for transforming hydrogen gas into a less flammable liquid fuel that can be safely stored and transported

Hydrogen is often touted as the fuel of the future. But because this gas is highly explosive, it must be stored and transported under pressure in specialized and expensive containers. Hydrogen therefore has issues in terms of safety, logistics, and profitability that could significantly limit its wider use.

However, a solution might lie in research by EPFL scientists, who have developed a simple system based on two chemical reactions. The first reaction transforms hydrogen into formic acid, a liquid that is easy to store and less flammable than gasoline, while the second reaction does the reverse and restores the hydrogen.

Another possible application of their technology would be to use atmospheric CO2 to synthesize a number of useful chemical products.

Gabor Laurenczy's team has already developed a process for transforming formic acid into hydrogen gas. The method was the subject of several articles, one of which appeared in Science, and it is currently under industrial development.

But a complete and coherent system would also require the inverse process: transforming hydrogen into formic acid. This has now been achieved, completing the cycle, thanks to the financial support of EOS Holding. The scientists in Laurenczy's team have described the process in a Nature Communications article.

The researchers synthesized formic acid in a single step, starting with hydrogen and atmospheric CO2. Conventional methods to accomplish this involve several steps, which are complicated to carry out and generate undesirable chemical byproducts.

The two chemical reactions – hydrogen to formic acid and back to hydrogen - are catalytic: the advantage is that nothing is lost in the transformation, and the process can thus be used in constructing sustainable devices.

With their two catalytic reactions, the researchers now possess all the technology they need to build a complete, integrated device. Laurenczy envisions small energy storage units in which the current from photovoltaic cells produces hydrogen by electrolysis, which is then transformed and stored as formic acid, and finally transformed back into hydrogen to produce electricity at night-time. "Our procedure is simple enough that it can be implemented at the domestic level," he says.

Another possible application of this technology would be to use atmospheric CO2, a greenhouse gas, as a building-block for chemical synthesis. Formic acid is the basis of numerous organic syntheses, e.g. in the textile industry.

As Laurenczy explains: "We are killing two birds with one stone: we could sequester part of the 35 gigatons of CO2 that are emitted into the atmosphere every year, and also use it to synthesize materials."

Lionel Pousaz | Eurek Alert!
Further information:
http://www.epfl.ch

Further reports about: CO2 EOS Hydrogen Polytechnique acid catalytic explosive synthesize

More articles from Power and Electrical Engineering:

nachricht Solar houses scientifically evaluated
30.08.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Cleanroom on demand
29.08.2016 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>