Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward Smarter Underwater Drones

02.06.2014

The news was not good. An underwater drone armed with the best technology on the planet had descended repeatedly to the bottom of the Indian Ocean, trying to find Malaysia Airlines Flight 370. Time after time, it turned up nothing.

If Nina Mahmoudian has her way, the next generation of autonomous underwater vehicles (AUVs) will have a much better chance of getting it right.


Barzin Moridian

Nina Mahmoudian, standing second from right, and her team of student researchers on the Michigan Technological University waterfront prepare to launch their underwater drone, ROUGHIE, in Portage Lake.

AUVs like the one that hunted for Flight 370 are laden with advanced technology, but they have their shortcomings. During a search, they travel in a predetermined pattern, retrieving reams of information and returning it to the surface, where it can be analyzed, says Mahmoudian, a researcher at Michigan Technological University. Thus, they can spend a lot of time gathering data on things that are not, for example, a missing airplane.

“You need an autonomous vehicle that can go deep and explore an area with a sense of what it is looking for,” she said. “We want to make a smarter vehicle, one that can search on its own and make decisions on its own.”

Mahmoudian is building four of those smarter AUVs, each a little bigger than a loaf of French bread. When they are complete, she will give them something new: better, more powerful brains. That involves revamping their software so they “know” what they are looking for. “AUVs like these could be so much more useful for finding small, hazardous objects like mines, or for detecting problems with cables and pipelines,” she said.

Mahmoudian’s AUVs, named ROUGHIEs (for Research Oriented Underwater Gliders for Hands-on Investigative Engineering) will be underwater gliders. Powered only by batteries, they will “fly” slowly through the water simply by adjusting their buoyancy and weight. This will make them safer and more reliable in shallow waters, where a propeller could become tangled in vegetation or injure a person.

That’s important, because the ROUGHIEs will not be exploring the middle of the ocean; they are designed for use near the water’s edge, which offers a special challenge.

“They come up on the coast, where there’s lots of noise, and we want ours to be able to talk with each other, and perhaps to a mother ship, in any environment,” she said. “That means they’ll have to operate in an area with lots of boats, swimmers and the like.”

Her ROUGHIEs offer additional advantages. They will be modular, allowing users to swap out different components depending on what tasks the drones undertake. And they will cost a fraction of the price of a commercial model to build. That makes them ideal for the trial-and-error process inherent in scientific research.

Underwater gliders and other types of AUVs already play an important role in addressing some of today’s most pressing environmental, safety and biological challenges. Their uses range from detecting dangerous contaminants, like oil spills, to retrieving evidence of climate change. By arming them with smarter software, they would become even better at doing their jobs, including searching an ocean’s depths.

“We need solutions for these cases,” Mahmoudian said. “The disappearance of the Malaysian aircraft is a clear example of why we must do this.”

The Office of Naval Research is supporting Mahmoudian’s effort with a $125,000 grant to build the four low-cost underwater gliders. Members of her team are Byrel Mitchell and Saeedeh Fard, both PhD students in mechanical engineering-engineering mechanics; mechanical engineering undergraduates Eric Wilkening and Brian Page; and Anthony Pinar, PhD student in electrical engineering. Mahmoudian is an assistant professor in Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics.

Marcia Goodrich | newswise
Further information:
http://www.mtu.edu

Further reports about: Flight Hands-on batteries decisions drone hazardous underwater underwater drone

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>