Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward Smarter Underwater Drones

02.06.2014

The news was not good. An underwater drone armed with the best technology on the planet had descended repeatedly to the bottom of the Indian Ocean, trying to find Malaysia Airlines Flight 370. Time after time, it turned up nothing.

If Nina Mahmoudian has her way, the next generation of autonomous underwater vehicles (AUVs) will have a much better chance of getting it right.


Barzin Moridian

Nina Mahmoudian, standing second from right, and her team of student researchers on the Michigan Technological University waterfront prepare to launch their underwater drone, ROUGHIE, in Portage Lake.

AUVs like the one that hunted for Flight 370 are laden with advanced technology, but they have their shortcomings. During a search, they travel in a predetermined pattern, retrieving reams of information and returning it to the surface, where it can be analyzed, says Mahmoudian, a researcher at Michigan Technological University. Thus, they can spend a lot of time gathering data on things that are not, for example, a missing airplane.

“You need an autonomous vehicle that can go deep and explore an area with a sense of what it is looking for,” she said. “We want to make a smarter vehicle, one that can search on its own and make decisions on its own.”

Mahmoudian is building four of those smarter AUVs, each a little bigger than a loaf of French bread. When they are complete, she will give them something new: better, more powerful brains. That involves revamping their software so they “know” what they are looking for. “AUVs like these could be so much more useful for finding small, hazardous objects like mines, or for detecting problems with cables and pipelines,” she said.

Mahmoudian’s AUVs, named ROUGHIEs (for Research Oriented Underwater Gliders for Hands-on Investigative Engineering) will be underwater gliders. Powered only by batteries, they will “fly” slowly through the water simply by adjusting their buoyancy and weight. This will make them safer and more reliable in shallow waters, where a propeller could become tangled in vegetation or injure a person.

That’s important, because the ROUGHIEs will not be exploring the middle of the ocean; they are designed for use near the water’s edge, which offers a special challenge.

“They come up on the coast, where there’s lots of noise, and we want ours to be able to talk with each other, and perhaps to a mother ship, in any environment,” she said. “That means they’ll have to operate in an area with lots of boats, swimmers and the like.”

Her ROUGHIEs offer additional advantages. They will be modular, allowing users to swap out different components depending on what tasks the drones undertake. And they will cost a fraction of the price of a commercial model to build. That makes them ideal for the trial-and-error process inherent in scientific research.

Underwater gliders and other types of AUVs already play an important role in addressing some of today’s most pressing environmental, safety and biological challenges. Their uses range from detecting dangerous contaminants, like oil spills, to retrieving evidence of climate change. By arming them with smarter software, they would become even better at doing their jobs, including searching an ocean’s depths.

“We need solutions for these cases,” Mahmoudian said. “The disappearance of the Malaysian aircraft is a clear example of why we must do this.”

The Office of Naval Research is supporting Mahmoudian’s effort with a $125,000 grant to build the four low-cost underwater gliders. Members of her team are Byrel Mitchell and Saeedeh Fard, both PhD students in mechanical engineering-engineering mechanics; mechanical engineering undergraduates Eric Wilkening and Brian Page; and Anthony Pinar, PhD student in electrical engineering. Mahmoudian is an assistant professor in Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics.

Marcia Goodrich | newswise
Further information:
http://www.mtu.edu

Further reports about: Flight Hands-on batteries decisions drone hazardous underwater underwater drone

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>