Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where does tomorrow’s energy come from? Researchers explore new pathways

09.11.2011
In just a few weeks´ time the European Union will present its scenarios for tomorrow’s energy, the “Energy Roadmap 2050” – and already there is some excitement about the question of price increases.

Behind such estimates, however, there are scientific models: computer simulations of real world processes. They are the tools to assess costs and benefits of a transformation of our energy system in line with climate change mitigation.

This week, the most relevant developers of such models assembled under the umbrella of the Stanford Energy Modeling Forum (EMF), for the first time at the Potsdam Institute for Climate Impact Research (PIK).

The new analyses they are preparing are about data and formula – but in the end also about euros and cents for industry and households.

“Together, we are going to have a real close look at the different technologies, from wind power to nuclear power,” says Elmar Kriegler of PIK. “We are examining their relevance for the world’s energy system – this study could be a huge step forward.” Kriegler is a member of the steering committee of the new EMF study and a lead author of the next assessment report of the Intergovernmental Panel on Climate Change, IPCC. Important parts of this report will be based on these global scenarios of future greenhouse-gas emissions reduction.

“Policy-makers need a robust basis for decision-taking – so the different options have to be clearly labeled for them. When we run the different scenarios, these options get spelled out”, says Kriegler. “That’s what the EMF model comparison is aiming to do.” Up to now, the EMF focused on the analysis of energy and climate change mitigation scenarios for the US and the global level. Now, with support from PIK, the assessment of scenarios for Europe have become part of the program for the first time – stirring a comprehensive scientific debate that has been lacking up till now.

Potsdam researcher coordinates European comparison

The meeting was therefore a kick-off for a systematic comparison of energy models for Europe in which more than a dozen teams of scientists will project the future of energy supply. Taking part in this joint effort are the developers of the model that the EU-scenarios are based upon. Under the umbrella of the EMF, the comparison will be coordinated by Brigitte Knopf of PIK. “We will analyse the technical feasibility, the costs, but also the uncertainties of the implementation of climate protection targets,” says Knopf. “The idea is to identify several viable pathways. Model intercomparisons are important for understanding how robustly these pathways will achieve the targets - and which of them will be a hard road.”

A recent PIK study on the nuclear phase-out in Germany provided an important contribution to the debate on electricity costs. Now Europe, in addition to Germany, will be the focus of a new working group at PIK. The group was founded in parallel to the international meeting of model developers – up to now, the Potsdam-based researchers primarily studied global energy scenarios. “Europe is tremendously important for global mitigation of climate change,” says PIK’s chief economist Ottmar Edenhofer. “If we cannot achieve real progress in Europe, efforts for mitigation elsewhere will come under pressure.” As co-chair of the IPCC’s working group for climate change mitigation, he stressed how relevant the model intercomparison is for the next assessment report. “Only on the basis of scientific work like this is it possible to reasonably tackle the climate problem.”

A forum of scientists, but also oil corporations like Exxon

The Stanford Energy Modeling Forum seeks to improve understanding on the energy/environment problem by harnessing the collective capabilities of participating experts. It does so by explaining the strengths, limitations and caveats of alternative analytical approaches, and by identifying high priority directions for future research. Amongst the members there are scientific institutions like the Massachusetts Institute of Technology or the British Oxford University, organisations like the Electric Power Research Institute, and corporations like the oil company Exxon or Électricité de France.

Related Links

- to the new PIK working group: http://www.pik-potsdam.de/research/sustainable-solutions/groups/eseg/eseg

- to the Stanfort Energy Modelling Forum: http://emf.stanford.edu/

For further information please contact the PIK press office

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

Further reports about: Climate change EMF PIK computer simulation energy system gas emission

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>