Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny MAVs May Someday Explore and Detect Environmental Hazards

Air Force Office of Scientific Research-sponsored researcher, Dr. Robert Wood of Harvard University is leading the way in what could become the next phase of high-performance micro air vehicles for the Air Force.

His basic research is on track to evolve into robotic, insect-scale devices for monitoring and exploration of hazardous environments, such as collapsed structures, caves and chemical spills.

Recent prototype of the Harvard Microrobotic Fly, a three-centimeter wingspan flapping-wing robot. (Credit: Ben Finio, The Harvard Microrobotics Lab)

"We are developing a suite of capabilities which we hope will lead to MAVs that exceed the capabilities of existing small aircraft. The level of autonomy and mobility we seek has not been achieved before using robotic devices on the scale of insects," said Wood.

Wood and his research team are trying to understand how wing design can impact performance for an insect-size, flapping-wing vehicle. Their insights will also influence how such agile devices are built, powered and controlled.

"A big emphasis of our AFOSR program is the experimental side of the work," said Wood. "We have unique capabilities to create, flap and visualize wings at the scales and frequencies of actual insects."

The researchers are constructing wings and moving them at high frequencies recreating trajectories similar to those of an insect. They are also able to measure multiple force components, and they can observe fluid flow around the wings flapping at more than 100 times per second.

Performing experiments at such a small scale presents significant engineering challenges beyond the study of the structure-function relationships for the wings.

"Our answer to the engineering challenges for these experiments and vehicles is a unique fabrication technique we have developed for creating wings, actuators, thorax and airframe at the scale of actual insects and evaluating them in fluid conditions appropriate for their scale," he said.

They are also performing high-speed stereoscopic motion tracking, force measurements and flow visualization; the combination of which allows for a unique perspective on what is going on with these complex systems.

The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:

Further reports about: AFOSR Ambient Air Hazards MAVS Tiny plants environmental risk

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>