Tiny levers, big moves in piezoelectric sensors

A piezoelectric material, such as quartz, expands slightly when fed electricity and, conversely, generates an electric charge when squeezed. Quartz watches take advantage of this property to keep time: electricity from the watch's battery causes a piece of quartz to expand and contract inside a small chamber at a specific frequency that circuitry in the watch translates into time.

Piezoelectric materials are also in sensors in sonar and ultrasound systems, which use the same principle in reverse to translate sound waves into images of, among other things, fetuses in utero and fish under the water.

Although conventional piezoelectric materials work fairly well for many applications, researchers have long sought to find or invent new ones that expand more and more forcefully and produce stronger electrical signals. More reactive materials would make for better sensors and could enable new technologies such as “energy harvesting,” which would transform the energy of walking and other mechanical motions into electrical power.

Enter a material named PMN-PT.**

A large team led by scientists from the University of Wisconsin-Madison developed a way to incorporate PMN-PT into tiny, diving-board like cantilevers on a silicon base, a typical material for MEMS construction, and demonstrated that PMN-PT could deliver two to four times more movement with stronger force — while using only 3 volts — than most rival materials studied to date. It also generates a similarly strong electric charge when compressed, which is good news for those in the sensing and energy harvesting businesses.

To confirm that the experimental observations were due to the piezoelectric's performance, NIST researcher Vladimir Aksyuk developed engineering models of the cantilevers to estimate how much they would bend and at what voltage. Aksyuk also made other performance measures in comparison to silicon systems that achieve similar effects using electrostatic attraction.

“Silicon is good for these systems, but it is passive and can only move if heated or using electrostatics, which requires high voltage or large dissipated power,” says Aksyuk. “Our work shows definitively that the addition of PMN-PT to MEMS designed for sensing or as energy harvesters will provide a tremendous boost to their sensitivity and efficiency. A much bigger 'bend for your buck,' I guess you could say.”

Other participants included researchers from Penn State University; the University of California, Berkeley; the University of Michigan; Cornell University; and Argonne National Laboratory.

* S.H. Baek, J.Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker, J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick and C.B. Eom. Giant piezoelectricity on Si for hyperactive MEMS. Science. Published Nov. 18, 2011. Vol. 334 no. 6058 pp. 958-961. DOI: 10.1126/science.1207186.

** A crystalline alloy of lead, magnesium niobate and lead titanate.

Media Contact

Mark Esser EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors