Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny generators turn waste heat into power

The second law of thermodynamics is a big hit with the beret-wearing college crowd because of its implicit existential crunch. The tendency of a closed systems to become increasingly disordered if no energy is added or removed is a popular, if not depressing, "things fall apart" sort-of-law that would seem to confirm the adolescent experience.

Now a joint team of Ukrainian and American scientists has demanded more work and less poetry from the second law of thermodynamics, proposing a novel "pyroelectric" method to power tiny devices using waste heat.

Using tiny structures called ferroelectric nanowires, they can rapidly generate an electrical current in response to any change in the ambient temperature, harvesting otherwise wasted energy from thermal fluctuations. Their report appears in the Journal of Applied Physics, which is published by the American Institute of Physics.

Explains lead researcher Anna Morozovska of the National Academy of Sciences of Ukraine, "The second law of thermodynamics rules modern life: Through all kinds of industry, humans consistently produce an enormous amount of waste heat. However, the laws of thermodynamics do not exclude rescuing some of this energy by harvesting the thermal fluctuations to produce electricity."

Pyroelectrictricity can play key role in consumer electronics, says Morozovska, and recovering this heat in the form of pyroelectric energy may bring about a new era of "tiny energy." Pyroelectric nanogenerators could be extremely useful for powering specific tasks in biological applications, medicine and nanotechnology, particularly in space because they perform well in low temperatures.

In an investigation of the pyroelectric properties of ferroelectric nanowires, the team analyzed how the pyroelectric coefficient corresponds to the radius of the wire and its coupling. They found that the smaller the wire radius, the more the pyroelectric coefficient diverges until a critical radius at which the response changes to paraelectric (above the Curie temperature). This so-called "size effect" could be used to tune the phase transition temperatures in ferroelectric nanostructures, thus enabling a system with a large, tunable, pyroelectric response.

In theory, the use of rectifying contacts could enable the polarized ferroelectric nanowire to generate a giant, pyroelectric, direct current and voltage in response to temperature fluctuations that could be harvested and detected using a bolometric detector. Such a nanoscale device would not contain any moving parts and could be suitable for long-term operation in ambient applications such as in-vitro biological systems and outer space. The researchers calculate that these little nanogenerators would have very high efficiency at low temperatures, decreasing at warmer temperatures.

The article, "Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting" by Anna N. Morozovska, Eugene A. Eliseev, George S. Svechnikov, and Sergei V. Kalinin appears in the Journal of Applied Physics.

About Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See:


The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>