Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny dancers: Can ballet bugs help us build better robots?

21.10.2015

High-speed cameras capture spider crickets' aerial acrobatics

When it's time to design new robots, sometimes the best inspiration can come from Mother Nature. Take, for example, her creepy, but incredibly athletic spider crickets.


If spider crickets were as large as humans, how far could they jump?

Credit: Royce Faddis/Johns Hopkins University

Johns Hopkins engineering students and their professor have spent more than eight months unraveling the hopping skills, airborne antics and safe-landing patterns of these pesky insects that commonly lurk in the dark corners of damp basements.

The team, which hopes to pave the way for a new generation of small but skillful jumping robots, will present its findings Nov. 23 during a poster session in Boston at the 68th annual meeting of the American Physical Society's Division of Fluid Dynamics.

Caption: Undergraduate researcher Emily Palmer and one of her spider cricket subjects. (Credit: Will Kirk/Johns Hopkins University)

The Johns Hopkins team members believe non-human creatures may be the best models in designing mechanical helpers to carry out certain important tasks. Figuring out how critters move, they say, could lead to planetary rovers that crawl like caterpillars or winged drones that hover like hummingbirds.

So what design tips did the researchers manage to glean from these spindly six-legged bugs?

For one thing, the Johns Hopkins researchers were able to use high-speed video cameras to collect tantalizing clues about how these tiny wingless creatures can somehow leap a distance equal to about 60 times their body length. That's a feat far beyond what any human track star could accomplish. An adult human who wanted to replicate the cricket's leap would have to jump 300 feet or more--roughly the length of a football field. And, most times, spider crickets manage to land safely on their feet. How, the researchers wanted to know, can these tiny bugs accomplish this?

"Because they don't have wings, the main things they use during their 'flight' to stabilize their posture is their limbs," said Emily Palmer, a sophomore mechanical engineering major in the university's Whiting School of Engineering who is doing much of the testing. "We're looking at the way the spider crickets move their bodies and move their limbs to stabilize their posture during a jump."

And why would such knowledge be useful?

"Ultimately, the application would be in really tiny robots," said Palmer, who is from Exeter, N.H. Deploying tiny high-jumping robots to travel over rugged, uneven ground, she said, would utilize a more efficient and probably less expensive form of locomotion, compared to flying robots or humans on foot.

To get a clear, close-up view of the crickets' limber limbs in action, the team's three video cameras each snap 400 frames per second. Then, by slowing down the finished footage, the researchers see precisely how each spindly insect leg contributed to the amazing leaps and landings.

Rajat Mittal, the Johns Hopkins mechanical engineering professor who is supervising the research, was startled to see that, in slow-motion, the crickets' limb movements bore an uncanny resemblance to classical dance.

"These videos have actually been quite eye-opening," he said, "because it's only when you slow these critters down that you really start to see the beauty and the intricacy of their movement. The analogy that comes to mind is of a ballerina performing a ballet. It's a very beautiful, controlled, intricate motion."

But Mittal and his students found that beneath such artistic movements lie some serious lessons in aerodynamics. The slow-motion playback confirmed that during the "flight" segment of their jumps, the crickets carefully use their limbs and even perhaps their antennae to stabilize their posture and prepare for a safe landing. The crickets seek to land on their feet, the researchers said, so that they can quickly be prepared to leap again to escape any predators that are waiting to pounce.

Some of the video footage yielded surprises. The team discovered that as the crickets soared upward during the early part of their jumps, the bugs streamlined their bodies like a projectile to maximize the distance they would travel. "They really are masters of aerodynamics," Mittal said.

Captured by the lab's cameras, this aerial mastery was transferred to computers to create detailed three-dimensional models depicting how each insect's body parts move during a leap and a touchdown. Mittal suggested that a new generation of jumping micro-robots modeled on these crickets might someday be able to help look for victims after a powerful earthquake or carry out other tasks without putting humans searchers at risk.

###

Other participants in this research project were Noah Cowan, a Johns Hopkins associate professor of mechanical engineering; David Gorman and Catarina Neves, both Johns Hopkins undergraduate seniors majoring in mechanical engineering; and Nicolas Deshler, a high school intern who is currently in his senior year at Washington International School in Washington, D.C. Deshler's participation was supported by the Research Experience for Undergraduates Program, funded by the National Science Foundation and administered at Johns Hopkins by the university's Institute for NanoBioTechnology.

Video footage, still photos and an info graphic are available; contact Phil Sneiderman.

Media Contact

Phil Sneiderman
prs@jhu.edu
443-997-9907

 @JohnsHopkins

http://www.jhu.edu 

Phil Sneiderman | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>