Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tilting at wind farms

09.01.2009
Controlling rotor speed smooths wind power supply

A way to make wind power smoother and more efficient that exploits the inertia of a wind turbine rotor could help solve the problem of wind speed variation, according to research published in the International Journal of Power Electronics.

Wind power is being touted as a clean and inexhaustible energy source across the globe, but the wind is intermittent and so the power output of wind farms can be variable. Proposed measures to smooth these power fluctuations usually involve the installation of units of batteries or capacitors to store electricity on good days and release their energy on still days or at times when wind speeds are too high for system stability. Technology to smooth the power supply and prevent blackouts due to the tripping of safety switches when electricity frequency deviates wildly is also essential.

Despites its deficiencies, a report from the US Department of Energy suggests that installed wind energy capacity could reach 300 gigawatts by 2030 to meet a fifth of the US electricity demand.

Now, Asghar Abedini, Goran Mandic and Adel Nasiri at the Department of Electrical Engineering and Computer Science, Power Electronics and Motor Drives Laboratory, University of Wisconsin-Milwaukee, have devised a solution to the electricity grid susceptibility to changes in wind speed.

The researchers have devised a novel control method that can mitigate power fluctuations using the inertia of the wind turbine's rotor as an energy storage component. Simply put, they have created a braking control algorithm that adjusts the rotor speed so that when incoming wind power is greater than the average power, the rotor is allowed to speed up so that it can store the excess energy as kinetic energy rather than generating electricity. This energy is then released when the wind power falls below average.

This approach, the team explains, precludes the need for external energy storage facilities such as capacitors and the additional infrastructure and engineering they entail. Their method also captures wind energy more effectively and so improves the overall efficiency of wind farming potentially reducing the number of turbines required at any given site.

"Wind power smoothing using rotor inertia aimed at reducing grid susceptibility" in International Journal of Power Electronics, vol 1, pp 227-247

Adel Nasiri | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>