Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This 5-fingered robot hand learns to get a grip on its own

10.05.2016

Robots today can perform space missions, solve a Rubik's cube, sort hospital medication and even make pancakes. But most can't manage the simple act of grasping a pencil and spinning it around to get a solid grip.

Intricate tasks that require dexterous in-hand manipulation -- rolling, pivoting, bending, sensing friction and other things humans do effortlessly with our hands -- have proved notoriously difficult for robots.


A University of Washington research team has custom built one of the most highly capable five-fingered robot hands in the world. They also developed an accurate simulation model that enables a computer to analyze movements in real time, and in their latest demonstration (beginning at 1:47), apply the model to the hardware and real-world tasks like rotating an elongated object.

With each attempt, the robot hand gets progressively more adept at spinning the tube, thanks to machine learning algorithms that help it model both the basic physics involved and plan which actions it should take to achieve the desired result.

Credit: Vikash Kumar, University of Washington

Now, a University of Washington team of computer science and engineering researchers has built a robot hand that can not only perform dexterous manipulation but also learn from its own experience without needing humans to direct it. Their latest results are detailed in a paper to be presented May 17 at the IEEE International Conference on Robotics and Automation.

"Hand manipulation is one of the hardest problems that roboticists have to solve," said lead author Vikash Kumar, a UW doctoral student in computer science and engineering. "A lot of robots today have pretty capable arms but the hand is as simple as a suction cup or maybe a claw or a gripper."

By contrast, the UW research team spent years custom building one of the most highly capable five-fingered robot hands in the world. Then they developed an accurate simulation model that enables a computer to analyze movements in real time. In their latest demonstration, they apply the model to the hardware and real-world tasks like rotating an elongated object.

With each attempt, the robot hand gets progressively more adept at spinning the tube, thanks to machine learning algorithms that help it model both the basic physics involved and plan which actions it should take to achieve the desired result.

This autonomous learning approach developed by the UW Movement Control Laboratory contrasts with robotics demonstrations that require people to program each individual movement of the robot's hand in order to complete a single task.

"Usually people look at a motion and try to determine what exactly needs to happen --the pinky needs to move that way, so we'll put some rules in and try it and if something doesn't work, oh the middle finger moved too much and the pen tilted, so we'll try another rule," said senior author and lab director Emo Todorov, UW associate professor of computer science and engineering and of applied mathematics.

"It's almost like making an animated film -- it looks real but there was an army of animators tweaking it," Todorov said. "What we are using is a universal approach that enables the robot to learn from its own movements and requires no tweaking from us."

Building a dexterous, five-fingered robot hand poses challenges, both in design and control. The first involved building a mechanical hand with enough speed, strength responsiveness and flexibility to mimic basic behaviors of a human hand.

The UW's dexterous robot hand -- which the team built at a cost of roughly $300,000 -- uses a Shadow Hand skeleton actuated with a custom pneumatic system and can move faster than a human hand. It is too expensive for routine commercial or industrial use, but it allows the researchers to push core technologies and test innovative control strategies.

"There are a lot of chaotic things going on and collisions happening when you touch an object with different fingers, which is difficult for control algorithms to deal with," said co-author Sergey Levine, UW assistant professor of computer science and engineering who worked on the project as a postdoctoral fellow at University of California, Berkeley. "The approach we took was quite different from a traditional controls approach."

The team first developed algorithms that allowed a computer to model highly complex five-fingered behaviors and plan movements to achieve different outcomes -- like typing on a keyboard or dropping and catching a stick -- in simulation.

Most recently, the research team has transferred the models to work on the actual five-fingered hand hardware, which never proves to be exactly the same as a simulated scenario. As the robot hand performs different tasks, the system collects data from various sensors and motion capture cameras and employs machine learning algorithms to continually refine and develop more realistic models.

"It's like sitting through a lesson, going home and doing your homework to understand things better and then coming back to school a little more intelligent the next day," said Kumar.

So far, the team has demonstrated local learning with the hardware system -- which means the hand can continue to improve at a discrete task that involves manipulating the same object in roughly the same way. Next steps include beginning to demonstrate global learning -- which means the hand could figure out how to manipulate an unfamiliar object or a new scenario it hasn't encountered before.

###

The research was funded by the National Science Foundation and the National Institutes of Health.

For more information, contact Kumar at vikash@cs.washington.edu.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Jennifer Langston | EurekAlert!

Further reports about: Robotics computer science machine learning algorithms

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>