Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Thermoelectronic Generator

04.12.2013
Highly Efficient New Design, Described in "Journal of Renewable and Sustainable Energy," Converts Heat and Solar Energy into Electricity

Through a process known as thermionic conversion, heat energy -- such as light from the sun or heat from burned fossil fuels -- can be converted into electricity with very high efficiency.

Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator -- described in AIP Publishing's Journal of Renewable and Sustainable Energy (JRSE).

Thermionic generators use the temperature difference between a hot and a cold metallic plate to create electricity. "Electrons are evaporated or kicked out by light from the hot plate, then driven to the cold plate, where they condense," explained experimental solid-state physicist Jochen Mannhart of the Max Planck Institute for Solid State Research in Stuttgart, Germany, the lead author of the JRSE paper. The resulting charge difference between the two plates yields a voltage that, in turn, drives an electric current, "without moving mechanical parts," he said.

Previous models of thermionic generators have proven ineffectual because of what is known as the "space-charge problem," in which the negative charges of the cloud of electrons leaving the hot plate repel other electrons from leaving it too, effectively killing the current. Mannhart, along with his former students Stefan Meir and Cyril Stephanos, and colleague Theodore Geballe of Stanford University, circumvented this problem using an electric field to pull the charge cloud away from the hot plate, which allowed electrons to fly to the cold plate.

"Practical thermionic generators have reached efficiencies of about 10 percent. The theoretical predictions for our thermoelectronic generators reach about 40 percent, although this is theory only," noted Mannhart. "We would be much surprised if there was a commercial application in the marketplace within the next five years, but if companies that are hungry for power recognize the potential of the generators, the development might be faster."

The article, "Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power" by S. Meir, C. Stephanos, T.H. Geballe, and J. Mannhart appears in the Journal of Renewable and Sustainable Energy. See: http://dx.doi.org/10.1063/1.4817730

Authors on this study are affiliated with Augsburg University in Germany; the Max Planck Institute for Solid State Research in Stuttgart, Germany; and Stanford University.

ABOUT THE JOURNAL
The Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal produced by AIP publishing that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. See: http://jrse.aip.org/

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>