Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Thermoelectronic Generator

04.12.2013
Highly Efficient New Design, Described in "Journal of Renewable and Sustainable Energy," Converts Heat and Solar Energy into Electricity

Through a process known as thermionic conversion, heat energy -- such as light from the sun or heat from burned fossil fuels -- can be converted into electricity with very high efficiency.

Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator -- described in AIP Publishing's Journal of Renewable and Sustainable Energy (JRSE).

Thermionic generators use the temperature difference between a hot and a cold metallic plate to create electricity. "Electrons are evaporated or kicked out by light from the hot plate, then driven to the cold plate, where they condense," explained experimental solid-state physicist Jochen Mannhart of the Max Planck Institute for Solid State Research in Stuttgart, Germany, the lead author of the JRSE paper. The resulting charge difference between the two plates yields a voltage that, in turn, drives an electric current, "without moving mechanical parts," he said.

Previous models of thermionic generators have proven ineffectual because of what is known as the "space-charge problem," in which the negative charges of the cloud of electrons leaving the hot plate repel other electrons from leaving it too, effectively killing the current. Mannhart, along with his former students Stefan Meir and Cyril Stephanos, and colleague Theodore Geballe of Stanford University, circumvented this problem using an electric field to pull the charge cloud away from the hot plate, which allowed electrons to fly to the cold plate.

"Practical thermionic generators have reached efficiencies of about 10 percent. The theoretical predictions for our thermoelectronic generators reach about 40 percent, although this is theory only," noted Mannhart. "We would be much surprised if there was a commercial application in the marketplace within the next five years, but if companies that are hungry for power recognize the potential of the generators, the development might be faster."

The article, "Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power" by S. Meir, C. Stephanos, T.H. Geballe, and J. Mannhart appears in the Journal of Renewable and Sustainable Energy. See: http://dx.doi.org/10.1063/1.4817730

Authors on this study are affiliated with Augsburg University in Germany; the Max Planck Institute for Solid State Research in Stuttgart, Germany; and Stanford University.

ABOUT THE JOURNAL
The Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal produced by AIP publishing that covers all areas of renewable and sustainable energy-related fields that apply to the physical science and engineering communities. See: http://jrse.aip.org/

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>