Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016

Coal-fired plants as alternative energy source to nuclear power are essential for ensuring the energy supply. But due to the high CO2 emission their combustion process requires optimization. In various projects the Center of Device Development CeDeD of Fraunhofer Institute for Silicate Research ISC could improve the combustion process to reduce large amounts of CO2 and save energy. CeDeD presents its competencies at the 8th International Freiberg Conference (June 12 to 16 2016) in Cologne.

On account of the energy turn and the turn away from the nuclear energy, alternative energy sources win more and more in meaning. However, the electricity supply cannot be provided by these energy sources only, the customary energy sources on fossil base come to the fore again. Mineral oil, natural gas as well as coal count to it basically. Unfortunately, due to CO2 emission they are much more detrimental to the environment and humans.


Image shows inside of furnace while heating up brown coal rest slag at 1100 °C.

Source: Fraunhofer ISC

With the Paris agreement on the reduction of climate change by the end of 2015, 195 states decided to push forward the international climate protection and to reduce the global greenhouse gas emissions drastically. The global warming should not be higher than 2 °C, better yet 1.5 °C above pre-industrial level. Coal-fired plants have a high CO2 emission and show great impact on the environment and the climate. In many projects, Dr. Andreas Diegeler, head of CeDeD, and his team were able to show an enormous reduction of CO2 emissions in coal-fired plants.

In order to optimize the process and to reduce CO2 emission the scientists had to characterize and analyze the combustion process and the combustion products. Also the handling and utilization of the waste materials, especially the waste slag, is one of the most important focus points due to the development of new technologies.

For this purpose CeDeD used the Thermo-Optical Measuring method (TOM), a development of Fraunhofer ISC that optimizes the heat treatment of materials. The TOM's procedures are used with the cooperation partners in the area of combustion process and their optimization within capability to measure the combustion products in situ and their reaction with co-products (additive gases). Additionally, the characterization of slag assessment and fuel processes gets to win knowledge about the running off process and their optimization possibilities in the lab graduation.

TOM is designed for in situ characterization of materials within each kind of heat treatment under variable conditions. Main part of the measuring system is a furnace which can be equipped with different heating insets, depending on which test material, which surrounding atmosphere and at which temperature the investigations should be carried out.

The system can be driven under controlled atmosphere from room temperature up to extremely high temperature of 2400 °C. To be able to evaluate the behavior of the coal, openings which are equipped with view windows are right on both sides of the furnace along a horizontal axis. Besides, the left view window is used as an illumination opening, the right view window as an observation window.

On the side of the observation window a CMOS camera with special optics and filters is positioned. On the left side a strong source of light, a LED-Array with 100W and 3000 lm, illuminates the inner area of the furnace along the optical axis. The test material, coal e.g. will be placed in the optical axis in the center of the furnace. With this configuration the contour change of the test material during the heat treatment can be observed by picture analysis with a resolution up to 0.3 µm.

In addition an IR spectrometer or a gas chromatograph can be connected to the inner area of the furnace to detect the combustion gases. The system is able to control the atmosphere during the heat treatment. With this feature additive gases can join the combustion process. The influence and reaction will be observed in situ and simultaneously.

With this data the team of CeDeD could adapt and optimize the heating process to increase the efficiency and reduce the emission of undesirable gas products, respectively to minimize the CO2 emission.

In the case of lignite coal-fired power plant the furnace cleaning process was been optimized in the blast furnace by lowering the temperature and adding additive gases. With this improvement a reduction of CO2 emission of around 10% was achieved which leads to nearly 900 gram per kWh instead of around 1000 gram per kWh with a standard process.

To understand this progress we look to a modern lignite coal power plant with a capacity of 4 GW electrical power output. An amount of over 30 million tons of coal per year is needed to produce around 30 TWh electrical energy. This results in a CO2 reduction of 3 million tons per year.

The Centre for Device Development, called CeDeD, of Fraunhofer ISC is specified to transfer new developed measuring methods from the lab to industrial use. It works as a service provider for the whole institute, but also for external companies. TOM is used at the moment by several cooperation partners in the energy industry successfully.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.ceded.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Further reports about: Atmosphere CO2 ISC Silicatforschung energy sources heat treatment power plant

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>