Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermal-powered, insectlike robot crawls into microrobot contenders' ring

02.07.2010
Robotic cars attracted attention last decade with a 100-mile driverless race across the desert competing for a $1 million prize put up by the U.S. government.

The past few years have given rise to a growing number of microrobots, miniaturized mobile machines designed to perform specific tasks. And though spectators might need magnifying glasses to see the action, some think the time has come for a microrobotics challenge.

"I'd like to see a similar competition at the small scale, where we dump these microrobots from a plane and have them go off and run for days and just do what they've been told," said Karl Böhringer, a University of Washington professor of electrical engineering. "That would require quite an effort at this point, but I think it would be a great thing."

Researchers at the UW and Stanford University have developed what might one day be a pint-sized contender. Böhringer is lead author of a paper in the June issue of the Journal of Microelectromechanical Systems introducing an insectlike robot with hundreds of tiny legs.

Compared to other such robots, the UW model excels in its ability to carry heavy loads -- more than seven times its own weight -- and move in any direction.

Someday, tiny mobile devices could crawl through cracks to explore collapsed structures, collect environmental samples or do other tasks where small size is a benefit. The UW's robot weighs half a gram (roughly one-hundredth of an ounce), measures about 1 inch long by a third of an inch wide, and is about the thickness of a fingernail.

Technically it is a centipede, with 512 feet arranged in 128 sets of four. Each foot consists of an electrical wire sandwiched between two different materials, one of which expands under heat more than the other. A current traveling through the wire heats the two materials and one side expands, making the foot curl. Rows of feet shuffle along in this way at 20 to 30 times each second.

"The response time is an interesting point about these tiny devices," Böhringer said. "On your stove, it might take minutes or even tens of minutes to heat something up. But on the small scale it happens much, much faster."

The legs' surface area is so large compared to their volume that they can heat up or cool down in just 20 milliseconds.

"It's one of the strongest actuators that you can get at the small scale, and it has one of the largest ranges of motion," Böhringer said. "That's difficult to achieve at the small scale."

The microchip, the robot's body and feet, was first built in the mid 1990s at Stanford University as a prototype part for a paper-thin scanner or printer. A few years later the researchers modified it as a docking system for space satellites. Now they have flipped it over so the structures that acted like moving cilia are on the bottom, turning the chip into an insectlike robot.

"There were questions about the strength of the actuators. Will they be able to support the weight of the device?" Böhringer said. "We were surprised how strong they were. For these things that look fragile, it's quite amazing."

The tiny legs can move more than just the device. Researchers were able to pile paper clips onto the robot's back until it was carrying more than seven times its own weight. This means that the robot could carry a battery and a circuit board, which would make it fully independent. (It now attaches to nine threadlike wires that transmit power and instructions.)

Limbs pointing in four directions allow the robot flexibility of movement.

"If you drive a car and you want to be able to park it in a tight spot, you think, 'Wouldn't it be nice if I could drive in sideways,'" Böhringer said. "Our robot can do that -- there's no preferred direction."

Maneuverability is important for a robot intended to go into tight spaces.

The chip was not designed to be a microrobot, so little effort was made to minimize its weight or energy consumption. Modifications could probably take off 90 percent of the robot's weight, Böhringer said, and eliminate a significant fraction of its power needs.

As with other devices of this type, he added, a major challenge is the power supply. A battery would only let the robot run for 10 minutes, while researchers would like it to go for days.

Another is speed. Right now the UW robot moves at about 3 feet per hour -- and it's far from the slowest in the microrobot pack.

Co-authors are former UW graduate students Yegan Erdem, Yu-Ming Chen and Matthew Mohebbi; UW electrical engineering professor Robert Darling; John Suh at General Motors; and Gregory Kovacs at Stanford.

Research funding was provided by the U.S. Defense Advanced Research Projects Agency, the National Science Foundation and General Motors Co.

For more information, contact Böhringer at 206-221-5177 or karl@ee.washington.edu

The article includes a table comparing published data on 10 microrobots.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Power and Electrical Engineering:

nachricht Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>