Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New theory may lead to more efficient solar cells

UH collaboration with Universite de Montreal published in Nature Communications

A new theoretical model developed by professors at the University of Houston (UH) and Université de Montréal may hold the key to methods for developing better materials for solar cells.

Eric Bittner, a John and Rebecca Moores Professor of Chemistry and Physics in UH's College of Natural Sciences and Mathematics, and Carlos Silva, an associate professor at the Université de Montréal and Canada Research Chair in Organic Semiconductor Materials, say the model could lead to new solar cell materials made from improved blends of semiconducting polymers and fullerenes.

The researchers describe their findings in a paper titled "Noise-Induced Quantum Coherence Drives Photo-Carrier Generation Dynamics at Polymeric Semiconductor Heterojunctions," appearing Jan. 29 in Nature Communications, a multidisciplinary journal dedicated to publishing research in the biological, physical and chemical sciences.

"Scientists don't fully understand what is going on inside the materials that make up solar cells. We were trying to get at the fundamental photochemistry or photophysics that describes how these cells work," Bittner said.

Solar cells are made out of organic semiconductors – typically blends of materials. However, solar cells made of these materials have about 3 percent efficiency. Bittner added that the newer materials, the fullerene/polymer blends, only reach about 10 percent efficiency.

"There is a theoretical limit for the efficiency of the ideal solar cell – the Shockley-Queisser limit. The theory we published describes how we might be able to get above this theoretical limit by taking advantage of quantum mechanical effects," Bittner said. "By understanding these effects and making use of them in the design of a solar cell, we believe you can improve efficiency."

Silva added, "In polymeric semiconductors, where plastics form the active layer of solar cells, the electronic structure of the material is intimately correlated with the vibrational motion within the polymer chain. Quantum-mechanical effects due to such vibrational-electron coupling give rise to a plethora of interesting physical processes that can be controlled to optimize solar cell efficiencies by designing materials that best exploit them."

The idea for the model was born while Bittner was a Fulbright Canada Scholar and visiting professor at the Université de Montréal collaborating with Silva, an expert in the field of ultrafast laser spectroscopy and organic semiconductors.

Bittner says the benefit of their model is that it provides insight into what is happening in solar cell systems.

"Our theoretical model accomplishes things that you can't get from a molecular model," he said. "It is mostly a mathematical model that allows us to look at a much larger system with thousands of molecules. You can't do ordinary quantum chemistry calculations on a system of that size."

The calculations have prompted a series of new experiments by Silva's group to probe the outcomes predicted by their model.

Bittner and Silva's next steps involve collaborations with researchers who are experts in making the polymers and fabricating solar cells.

The work at UH was funded by the Robert Welch Foundation and the National Science Foundation. The work in Canada was supported by the National Sciences and Engineering Research Council of Canada.

Media contact for Université de Montréal: Julie Gazaille, or (1) 514-343-6796

Editor's note: Story courtesy of Kathy Major, College of Natural Sciences and Mathematics

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

About Université de Montréal

Université de Montréal enjoys an enviable position as a leading research institution both in North America and the French-speaking world. The university's role as a hub between these spheres enables it to develop unique and dynamic research networks that are driven by world-renowned scientists, drawing collaboration with the globe's most innovative organizations. At a local level, the University is committed to building on the Montreal region's unique strengths in science and technology, encompassing fields such as aerospace engineering, nanoscale chemistry and software design, and has therefore promoted strategic relationships with public and private organizations. For more information about UM, visit the university's newsroom at .

To receive UH science news via email, sign up for UH-SciNews at

For additional news alerts about UH, follow us on Facebook at and Twitter at

Lisa Merkl | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>