Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theoretical Electrical Resistance Discovery Proven in Nanomaterials Lab

22.09.2009
Does theory lead experiments or do experiments lead theory?

Scientists know the correct answer is that interplay between theory and experiments result in new advances. At times, experiment and technological development pave the way for theory. At other times, successful theory can contribute substantially to interpretation and analysis of the experimental data.

But even more important is when theory can predict new effects and lead to new experiments and developments. This is evident in the new work at the University of Nebraska-Lincoln Materials Research Science and Engineering Center published in the scientific journal Nano Letters.

Three years ago, theoretical work of a research group of UNL physics and astronomy professor Evgeny Tsymbal predicted a new effect that could revolutionize the field of microelectronics by allowing faster, smaller and more energy-efficient memory devices. Recently, measurements of the electrical properties of ferroelectric materials performed at the Alexei Gruverman lab led to experimental verification of the predicted behavior. In their paper published online Aug. 21 in Nano Letters, Gruverman, an associate professor of physics and astronomy, and Tsymbal, with co-authors demonstrated a several-orders-of-magnitude change in electrical resistance upon flipping of polarization in ultra-thin ferroelectric films.

Because of their ability to retain permanent electric polarization in the absence of the electric field, for decades ferroelectrics have been the subject of intense development for use in nonvolatile memory, where tiny bits of information are stored as polarization dipoles oriented up and down. The effect discovered at the UNL center could help overcome one of the most serious problems related to miniaturization of charge-based memory technologies — reduced charge and increasing leakage current — that leads to larger power consumption and progressive loss of stored information. In fact, it can turn this problem into an advantage because it will allow nondestructive read-out of the polarization state of the film simply by measuring its electrical resistance, which can be performed at a significantly lower voltage.

Application of the advanced measurements techniques showed that a single bit of information can be as small as 20 nanometers in diameter (1/1000th diameter of a human hair).

The ferroelectric films for this study were grown by collaborators at the University of Wisconsin, Madison. Funding from the National Science Foundation helps support this research.

Evgeny Tsymbal, physics and astronomy, (402) 472-2586, etsymbal2@unl.edu, Alexei Gruverman, physics and astronomy, (402) 472-4788, alexei_gruverman@unl.edu
Links to the two papers referenced are: http://www.sciencemag.org/cgi/content/summary/313/5784/181 and

http://pubs.acs.org/doi/abs/10.1021/nl901754t

Evgeny Tsymbal | Newswise Science News
Further information:
http://www.unl.edu

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>