Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theoretical Electrical Resistance Discovery Proven in Nanomaterials Lab

22.09.2009
Does theory lead experiments or do experiments lead theory?

Scientists know the correct answer is that interplay between theory and experiments result in new advances. At times, experiment and technological development pave the way for theory. At other times, successful theory can contribute substantially to interpretation and analysis of the experimental data.

But even more important is when theory can predict new effects and lead to new experiments and developments. This is evident in the new work at the University of Nebraska-Lincoln Materials Research Science and Engineering Center published in the scientific journal Nano Letters.

Three years ago, theoretical work of a research group of UNL physics and astronomy professor Evgeny Tsymbal predicted a new effect that could revolutionize the field of microelectronics by allowing faster, smaller and more energy-efficient memory devices. Recently, measurements of the electrical properties of ferroelectric materials performed at the Alexei Gruverman lab led to experimental verification of the predicted behavior. In their paper published online Aug. 21 in Nano Letters, Gruverman, an associate professor of physics and astronomy, and Tsymbal, with co-authors demonstrated a several-orders-of-magnitude change in electrical resistance upon flipping of polarization in ultra-thin ferroelectric films.

Because of their ability to retain permanent electric polarization in the absence of the electric field, for decades ferroelectrics have been the subject of intense development for use in nonvolatile memory, where tiny bits of information are stored as polarization dipoles oriented up and down. The effect discovered at the UNL center could help overcome one of the most serious problems related to miniaturization of charge-based memory technologies — reduced charge and increasing leakage current — that leads to larger power consumption and progressive loss of stored information. In fact, it can turn this problem into an advantage because it will allow nondestructive read-out of the polarization state of the film simply by measuring its electrical resistance, which can be performed at a significantly lower voltage.

Application of the advanced measurements techniques showed that a single bit of information can be as small as 20 nanometers in diameter (1/1000th diameter of a human hair).

The ferroelectric films for this study were grown by collaborators at the University of Wisconsin, Madison. Funding from the National Science Foundation helps support this research.

Evgeny Tsymbal, physics and astronomy, (402) 472-2586, etsymbal2@unl.edu, Alexei Gruverman, physics and astronomy, (402) 472-4788, alexei_gruverman@unl.edu
Links to the two papers referenced are: http://www.sciencemag.org/cgi/content/summary/313/5784/181 and

http://pubs.acs.org/doi/abs/10.1021/nl901754t

Evgeny Tsymbal | Newswise Science News
Further information:
http://www.unl.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>