Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Future of Oil and Gas: Pumping Innovation in the Oil and Gas Industry

27.04.2015

Worldwide, total oil demand keeps growing. Low prices are fueling the trend.To remain competitive, companies need to reduce production costs. Siemens is supporting their efforts with innovations for the electrification, automation and digitalization of the complete production chain – from oil pump to gas pump.

In the space of just a few months, between late 2014 and early 2015, oil prices fell by roughly fifty percent. This happened because more oil reached the market, and partly because demand growth had weakened.


One day fully automated oil and gas fields could become a reality - Siemens is working on the necessary technologies at its development center in Trondheim, Norway

It was not the first time oil prices took a hit. They have always been volatile, but even more so during the past decade, explains Lisa Davis, the member of the Siemens Managing Board who is responsible for Siemens’ Oil & Gas businesses.

Oil’s low price is both a challenge and an opportunity for the industry. Well run oil and gas (O&G) companies that are strong today are likely to emerge even stronger after prices rebound. While the availability of oil fields and associated equipment is always paramount for them, during a slump they have every reason to also focus on cost effective production. Often this means bringing in new technologies and changing processes.

Ingenuity and Sophistication

Lowering production costs is not just an imminent need of the industry. It is also a long-term trend. Most of the “easy oil” has already been extracted – oil that can be produced cheaply because it is onshore, close to the surface, and conveniently spilling out of the ground under high pressure. Other sources, often considered to be “unconventional oil and gas,” require a lot more ingenuity and sophistication to tap.

These include, for example, oil and gas deposits that are deep underground, offshore, or locked in shale or in oil sands. On the whole, it is becoming harder to produce hydrocarbons. But there is also good news: this needn’t make O&G more expensive. We just need to get better at extracting them.

As in the past, technological innovations, as well as more cost-effective processes, will make up for these increased difficulties. What is considered unconventional oil and gas today is likely to become tomorrow’s conventional O&G. In this connection, the following trends are already taking shape:

- Existing fields will run longer and their yield will be increased by injecting water or CO2, which boost the pressure of the reserve.

- Fracking is likely to spread beyond North America.

- Production of heavy oil, e.g. from oil sands, will become more environmentally friendly and less energy-intensive.

- The global market for liquefied natural gas (LNG) is expected to grow robustly. More of the gas that is being flared, and thus wasted, today will be processed and add to market capacity tomorrow.

- One day, we will even see automated oil fields at the bottom of the sea, working maintenance-free over decades, at depths of several thousand meters.

At the same time alternatives to O&G are becoming increasingly viable. Electric cars may become more commonplace. And renewable sources, such as wind power, are becoming more economical and could crowd out fossil fuels. According to British Petroleum (BP), four fifths of demand growth is currently attributed to emerging economies. But even their growing appetite for energy may subside at some point.

With less easy oil available and alternatives to oil becoming more viable, the way forward is clear: O&G companies need to reduce production costs. Some are leading the way by bringing more automation to oil fields and by using data in smarter ways. Simply put, in the future more valves will be opened and closed by machines than by people. And it will more often be machines that decide when to open or close valves, not humans. Flying workers to remote offshore locations in helicopters may one day be the exception rather than the rule.

Automated equipment produces data – data that can be mined, aggregated into Big Data and transformed into Smart Data. Analyzing and understanding such production data helps to optimize processes. Here, visualization can be a key tool. Today, 3D visualization software makes it possible for users to immerse themselves in a virtual model of a facility. Indepth training sessions prepare technicians for future challenges.

This is already saving customers real money. For instance, the crew of an offshore platform in Africa was able to begin its training – virtually – while the facility was still under construction. Training sessions in the virtual model reduced the time needed to prepare workers for their tasks, thus helping to put the oil platform into operation more than two months earlier than planned.

Another area that offers opportunities to decrease costs is the replacement of mechanical drives with electrical drives. Today, a turbine often drives pumps and other machines directly, rather than a generator that then produces electricity. Powering equipment electrically instead, allows for energy savings – which in turn helps bring down production costs. So-called aeroderivative turbines can be particularly useful in this area.

Boosting mature fields

So do we need to brace for years of low oil prices? No one knows. But there is one lesson the O&G industry has learned from history. While the price of oil can swing wildly, demand growth can remain surprisingly stable. Over the long term, we have seen price peaks above 140 USD and troughs below 20 USD; but yearly demand growth was between one and two percent over the long run. And more importantly, roughly five percent of existing capacity has to be replaced every year, because of depleting O&G fields. To make up for this, new fields need to be developed and the output of existing fields needs to be boosted, for example through injection of gas.

Automation and digitalization are expected to keep O&G competitive as a form of energy over the course of the next few decades. Whether we like it or not, every year mankind is likely to burn a bit more O&G than the year before. In terms of absolute numbers our demand is growing. In relative terms the importance of O&G may decline over time, as other sources of energy become more important.

That will probably hold true until, one day in the future, it will be permanently more economical to leave the remaining oil in the earth’s crust rather than extracting it. This gradual transition will bring great business opportunities for those who have the courage to innovate and try out new ways to produce and use O&G. “When you look at the growing demand and at the sources of energy we have, it quickly becomes clear that oil and gas will remain crucial for the next few decades at least,“ says Lisa Davis. “We will also need renewables. For the time being we need everything we have. And that includes oil and gas.”

Andreas Kleinschmidt | Siemens - Pictures of the Future
Further information:
http://www.siemens.com
https://www.siemens.com/innovation/en/home/pictures-of-the-future/energy-and-efficiency/the-future-of-oil-and-gas-trends.html

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>