Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests Prove Electrolytic Cells Are Stable at 850 Degrees

17.02.2014
Siemens researchers have demonstrated the long-term stability of ceramic electrolytic cells that are used to produce hydrogen.

The results represent a step in the development of new energy storage systems. The use of electricity to generate hydrogen is considered to be a key technology for the storage of surplus energy from renewable sources. It could also play a crucial role in the transition of the energy system and the stabilization of grids.



As a result, Siemens' Industry Sector is developing and producing electrolyzers whose polymer electrolyte membrane (PEM) cells generate hydrogen at high pressure and temperatures under 100 degrees Celsius.

In a project funded by the German Ministry of Economics, scientists at Siemens' global research unit Corporate Technology (CT) have now also investigated high-temperature electrolysis. This technology could be more efficient than the conventional approach, since electrolysis reactions require a much lower cell voltage at high temperatures.

Another interesting property of high-temperature electrolysis is that the flow of the electricity can be reversed, allowing users to switch back and forth between efficient electrolysis processes and fuel cell operation. Such a system could use natural gas, biogas, or hydrogen to generate electricity or produce combined heat and power.

A future high-temperature electrolyzer could also be coupled with a system for synthesizing chemicals such as methane. The resulting waste heat could be used to generate the water vapor needed for high-temperature electrolysis. According to the researchers' simulations, hydrogen generation and methane synthesis would each have an efficiency of about 75 percent relative to their respective calorific values. This already takes into account the compression of the gases to 80 bars.

In the project, the CT researchers worked together with the ceramics manufacturer Kerafol and Forschungszentrum Jülich to optimize electrochemical cells that use an oxygen ion-conducting electrolyte as a substrate. The main challenge was to prevent the oxygen electrode from becoming detached, which had previously caused aging effects.

The researchers improved the electrode's stability by making it from a material that conducts electrons as well as oxygen ions. In a CT lab in Erlangen, ceramic electrolytic cells ran for more than 8,000 hours at 850 degrees Celsius. The cells had a current density of 0.5 amperes per square centimeter and a cell voltage of up to 1.1 volts. In this endurance test, the researchers noticed that the voltage-related aging amounted to only 0.2 percent per 1,000 hours of operation.

The researchers also demonstrated a concept for constructing the cell stacks. However, further development work is needed before larger cell stacks will have a sufficiently high level of long-term stability. The presentation of the lab results at project's sponsor brought the work on the three-year project's technology to a successful conclusion.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>