Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests Prove Electrolytic Cells Are Stable at 850 Degrees

17.02.2014
Siemens researchers have demonstrated the long-term stability of ceramic electrolytic cells that are used to produce hydrogen.

The results represent a step in the development of new energy storage systems. The use of electricity to generate hydrogen is considered to be a key technology for the storage of surplus energy from renewable sources. It could also play a crucial role in the transition of the energy system and the stabilization of grids.



As a result, Siemens' Industry Sector is developing and producing electrolyzers whose polymer electrolyte membrane (PEM) cells generate hydrogen at high pressure and temperatures under 100 degrees Celsius.

In a project funded by the German Ministry of Economics, scientists at Siemens' global research unit Corporate Technology (CT) have now also investigated high-temperature electrolysis. This technology could be more efficient than the conventional approach, since electrolysis reactions require a much lower cell voltage at high temperatures.

Another interesting property of high-temperature electrolysis is that the flow of the electricity can be reversed, allowing users to switch back and forth between efficient electrolysis processes and fuel cell operation. Such a system could use natural gas, biogas, or hydrogen to generate electricity or produce combined heat and power.

A future high-temperature electrolyzer could also be coupled with a system for synthesizing chemicals such as methane. The resulting waste heat could be used to generate the water vapor needed for high-temperature electrolysis. According to the researchers' simulations, hydrogen generation and methane synthesis would each have an efficiency of about 75 percent relative to their respective calorific values. This already takes into account the compression of the gases to 80 bars.

In the project, the CT researchers worked together with the ceramics manufacturer Kerafol and Forschungszentrum Jülich to optimize electrochemical cells that use an oxygen ion-conducting electrolyte as a substrate. The main challenge was to prevent the oxygen electrode from becoming detached, which had previously caused aging effects.

The researchers improved the electrode's stability by making it from a material that conducts electrons as well as oxygen ions. In a CT lab in Erlangen, ceramic electrolytic cells ran for more than 8,000 hours at 850 degrees Celsius. The cells had a current density of 0.5 amperes per square centimeter and a cell voltage of up to 1.1 volts. In this endurance test, the researchers noticed that the voltage-related aging amounted to only 0.2 percent per 1,000 hours of operation.

The researchers also demonstrated a concept for constructing the cell stacks. However, further development work is needed before larger cell stacks will have a sufficiently high level of long-term stability. The presentation of the lab results at project's sponsor brought the work on the three-year project's technology to a successful conclusion.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>