Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Terahertz technology: Seeing more with less

Single-chip integration of the components needed for sending and receiving terahertz radiation should help applications in imaging and communication

Terahertz technology is an emerging field that promises to improve a host of useful applications, ranging from passenger scanning at airports to huge digital data transfers.

Terahertz radiation sits between the frequency bands of microwaves and infrared radiation, and it can easily penetrate many materials, including biological tissue. The energy carried by terahertz radiation is low enough to pose no risk to the subject or object under investigation.

Before terahertz technology can take off on a large scale, however, developers need new kinds of devices that can send and receive radiation in this frequency range. Worldwide, electronic engineers are developing such devices. Now, Sanming Hu and co-workers from the A*STAR Institute of Microelectronics (IME), Singapore, have designed novel circuits and antennas for terahertz radiation and efficiently integrated these components into a transmitter–receiver unit on a single chip. Measuring just a few millimeters across, this area is substantially smaller than the size of current commercial devices. As such, it represents an important step towards the development of practical terahertz technologies.

Hu and his co-workers based their terahertz design on a fabrication technology known as BiCMOS, which enables full integration of devices on a single chip of only a few cubic millimeters in size. “Currently, commercial products for terahertz technologies use discrete modules that are assembled into a device,” explains Hu. These module-based devices tend to be considerably more bulky than fully integrated systems.
“In a commercial terahertz transmitter–receiver unit, the central module alone measures typically around 190 by 80 by 65 millimeters, which is roughly 1 million cubic millimeters,” says Hu. The novel design of Hu’s team unites the essential components of a terahertz device in a smaller two-dimensional area of just a few millimeters along each side. According to Hu and his co-workers, this compact device paves the way towards the mass production of a fully integrated terahertz system.

As the next step, the team will use the IME’s cutting-edge technologies to build more complex structures composed of several two-dimensional layers, which will be based on their new designs. Although the team is not pursuing any specific applications, their devices potentially open up a wide range of possibilities. These include wireless short-range transfers of data sets — the content of a Blu-ray disc could be sent in as little as a few seconds, for example — high-resolution biosensing, risk-free screening of patients and passengers, and see-through-envelope imaging (see image).

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Hu, S., Xiong, Y.-Z., Zhang, B., Wang, L., Lim, T.-G. et al. A SiGe BiCMOS transmitter/receiver chipset with on-chip SIW antennas for terahertz applications. IEEE Journal of Solid-State Circuits 47, 2654–2664 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>