Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz technology: Seeing more with less

15.05.2013
Single-chip integration of the components needed for sending and receiving terahertz radiation should help applications in imaging and communication

Terahertz technology is an emerging field that promises to improve a host of useful applications, ranging from passenger scanning at airports to huge digital data transfers.

Terahertz radiation sits between the frequency bands of microwaves and infrared radiation, and it can easily penetrate many materials, including biological tissue. The energy carried by terahertz radiation is low enough to pose no risk to the subject or object under investigation.

Before terahertz technology can take off on a large scale, however, developers need new kinds of devices that can send and receive radiation in this frequency range. Worldwide, electronic engineers are developing such devices. Now, Sanming Hu and co-workers from the A*STAR Institute of Microelectronics (IME), Singapore, have designed novel circuits and antennas for terahertz radiation and efficiently integrated these components into a transmitter–receiver unit on a single chip. Measuring just a few millimeters across, this area is substantially smaller than the size of current commercial devices. As such, it represents an important step towards the development of practical terahertz technologies.

Hu and his co-workers based their terahertz design on a fabrication technology known as BiCMOS, which enables full integration of devices on a single chip of only a few cubic millimeters in size. “Currently, commercial products for terahertz technologies use discrete modules that are assembled into a device,” explains Hu. These module-based devices tend to be considerably more bulky than fully integrated systems.
“In a commercial terahertz transmitter–receiver unit, the central module alone measures typically around 190 by 80 by 65 millimeters, which is roughly 1 million cubic millimeters,” says Hu. The novel design of Hu’s team unites the essential components of a terahertz device in a smaller two-dimensional area of just a few millimeters along each side. According to Hu and his co-workers, this compact device paves the way towards the mass production of a fully integrated terahertz system.

As the next step, the team will use the IME’s cutting-edge technologies to build more complex structures composed of several two-dimensional layers, which will be based on their new designs. Although the team is not pursuing any specific applications, their devices potentially open up a wide range of possibilities. These include wireless short-range transfers of data sets — the content of a Blu-ray disc could be sent in as little as a few seconds, for example — high-resolution biosensing, risk-free screening of patients and passengers, and see-through-envelope imaging (see image).

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Hu, S., Xiong, Y.-Z., Zhang, B., Wang, L., Lim, T.-G. et al. A SiGe BiCMOS transmitter/receiver chipset with on-chip SIW antennas for terahertz applications. IEEE Journal of Solid-State Circuits 47, 2654–2664 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6671
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>