Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Terahertz imaging on the cheap


New theory could reduce number of sensors required for high-resolution imaging systems

Terahertz imaging, which is already familiar from airport security checkpoints, has a number of other promising applications — from explosives detection to collision avoidance in cars. Like sonar or radar, terahertz imaging produces an image by comparing measurements across an array of sensors. Those arrays have to be very dense, since the distance between sensors is proportional to wavelength.

In the latest issue of IEEE Transactions on Antennas and Propagation, researchers in MIT's Research Laboratory for Electronics describe a new technique that could reduce the number of sensors required for terahertz or millimeter-wave imaging by a factor of 10, or even 100, making them more practical. The technique could also have implications for the design of new, high-resolution radar and sonar systems.

In a digital camera, the lens focuses the incoming light so that light reflected by a small patch of the visual scene strikes a correspondingly small patch of the sensor array. In lower-frequency imaging systems, by contrast, an incoming wave — whether electromagnetic or, in the case of sonar, acoustic — strikes all of the sensors in the array. The system determines the origin and intensity of the wave by comparing its phase — the alignment of its troughs and crests — when it arrives at each of the sensors.

As long as the distance between sensors is no more than half the wavelength of the incoming wave, that calculation is fairly straightforward, a matter of inverting the sensors' measurements. But if the sensors are spaced farther than half a wavelength apart, the inversion will yield more than one possible solution. Those solutions will be spaced at regular angles around the sensor array, a phenomenon known as "spatial aliasing."

Narrowing the field

In most applications of lower-frequency imaging, however, any given circumference around the detector is usually sparsely populated. That's the phenomenon that the new system exploits.

"Think about a range around you, like five feet," says Gregory Wornell, the Sumitomo Electric Industries Professor in Engineering in MIT's Department of Electrical Engineering and Computer Science and a co-author on the new paper. "There's actually not that much at five feet around you. Or at 10 feet. Different parts of the scene are occupied at those different ranges, but at any given range, it's pretty sparse. Roughly speaking, the theory goes like this: If, say, 10 percent of the scene at a given range is occupied with objects, then you need only 10 percent of the full array to still be able to achieve full resolution."

The trick is to determine which 10 percent of the array to keep. Keeping every tenth sensor won't work: It's the regularity of the distances between sensors that leads to aliasing. Arbitrarily varying the distances between sensors would solve that problem, but it would also make inverting the sensors' measurements — calculating the wave's source and intensity— prohibitively complicated.

Regular irregularity

So Wornell and his co-authors — James Krieger, a former student of Wornell's who is now at MIT's Lincoln Laboratory, and Yuval Kochman, a former postdoc who is now an assistant professor at the Hebrew University of Jerusalem — instead prescribe a detector along which the sensors are distributed in pairs. The regular spacing between pairs of sensors ensures that the scene reconstruction can be calculated efficiently, but the distance from each sensor to the next remains irregular.

The researchers also developed an algorithm that determines the optimal pattern for the sensors' distribution. In essence, the algorithm maximizes the number of different distances between arbitrary pairs of sensors.

With his new colleagues at Lincoln Lab, Krieger has performed experiments at radar frequencies using a one-dimensional array of sensors deployed in a parking lot, which verified the predictions of the theory. Moreover, Wornell's description of the sparsity assumptions of the theory — 10 percent occupation at a given distance means one-tenth the sensors — applies to one-dimensional arrays. Many applications — such as submarines' sonar systems — instead use two-dimensional arrays, and in that case, the savings compound: One-tenth the sensors in each of two dimensions translates to one-hundredth the sensors in the complete array.


Written by Larry Hardesty, MIT News Office

Additional background

Paper: "Multi-coset sparse imaging arrays":

Gregory Wornell:

Archive: "The blind codemaker":

Abby Abazorius | Eurek Alert!
Further information:

Further reports about: Laboratory Technology Terahertz algorithm collision ensures measurements phenomenon sonar technique wavelength

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>