Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz imaging on the cheap

06.05.2014

New theory could reduce number of sensors required for high-resolution imaging systems

Terahertz imaging, which is already familiar from airport security checkpoints, has a number of other promising applications — from explosives detection to collision avoidance in cars. Like sonar or radar, terahertz imaging produces an image by comparing measurements across an array of sensors. Those arrays have to be very dense, since the distance between sensors is proportional to wavelength.

In the latest issue of IEEE Transactions on Antennas and Propagation, researchers in MIT's Research Laboratory for Electronics describe a new technique that could reduce the number of sensors required for terahertz or millimeter-wave imaging by a factor of 10, or even 100, making them more practical. The technique could also have implications for the design of new, high-resolution radar and sonar systems.

In a digital camera, the lens focuses the incoming light so that light reflected by a small patch of the visual scene strikes a correspondingly small patch of the sensor array. In lower-frequency imaging systems, by contrast, an incoming wave — whether electromagnetic or, in the case of sonar, acoustic — strikes all of the sensors in the array. The system determines the origin and intensity of the wave by comparing its phase — the alignment of its troughs and crests — when it arrives at each of the sensors.

As long as the distance between sensors is no more than half the wavelength of the incoming wave, that calculation is fairly straightforward, a matter of inverting the sensors' measurements. But if the sensors are spaced farther than half a wavelength apart, the inversion will yield more than one possible solution. Those solutions will be spaced at regular angles around the sensor array, a phenomenon known as "spatial aliasing."

Narrowing the field

In most applications of lower-frequency imaging, however, any given circumference around the detector is usually sparsely populated. That's the phenomenon that the new system exploits.

"Think about a range around you, like five feet," says Gregory Wornell, the Sumitomo Electric Industries Professor in Engineering in MIT's Department of Electrical Engineering and Computer Science and a co-author on the new paper. "There's actually not that much at five feet around you. Or at 10 feet. Different parts of the scene are occupied at those different ranges, but at any given range, it's pretty sparse. Roughly speaking, the theory goes like this: If, say, 10 percent of the scene at a given range is occupied with objects, then you need only 10 percent of the full array to still be able to achieve full resolution."

The trick is to determine which 10 percent of the array to keep. Keeping every tenth sensor won't work: It's the regularity of the distances between sensors that leads to aliasing. Arbitrarily varying the distances between sensors would solve that problem, but it would also make inverting the sensors' measurements — calculating the wave's source and intensity— prohibitively complicated.

Regular irregularity

So Wornell and his co-authors — James Krieger, a former student of Wornell's who is now at MIT's Lincoln Laboratory, and Yuval Kochman, a former postdoc who is now an assistant professor at the Hebrew University of Jerusalem — instead prescribe a detector along which the sensors are distributed in pairs. The regular spacing between pairs of sensors ensures that the scene reconstruction can be calculated efficiently, but the distance from each sensor to the next remains irregular.

The researchers also developed an algorithm that determines the optimal pattern for the sensors' distribution. In essence, the algorithm maximizes the number of different distances between arbitrary pairs of sensors.

With his new colleagues at Lincoln Lab, Krieger has performed experiments at radar frequencies using a one-dimensional array of sensors deployed in a parking lot, which verified the predictions of the theory. Moreover, Wornell's description of the sparsity assumptions of the theory — 10 percent occupation at a given distance means one-tenth the sensors — applies to one-dimensional arrays. Many applications — such as submarines' sonar systems — instead use two-dimensional arrays, and in that case, the savings compound: One-tenth the sensors in each of two dimensions translates to one-hundredth the sensors in the complete array.

###

Written by Larry Hardesty, MIT News Office

Additional background

Paper: "Multi-coset sparse imaging arrays": http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06710127

Gregory Wornell: http://allegro.mit.edu/~gww/

Archive: "The blind codemaker": http://newsoffice.mit.edu/2012/error-correcting-codes-0210

Abby Abazorius | Eurek Alert!
Further information:
http://www.mit.edu

Further reports about: Laboratory Technology Terahertz algorithm collision ensures measurements phenomenon sonar technique wavelength

More articles from Power and Electrical Engineering:

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Tampering the current in a petri dish
19.05.2016 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>