Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel Temperature Calibration Improves NIST Microhotplate

Researchers at the National Institute of Standards and Technology (NIST) have developed a new calibration technique that will improve the reliability and stability of one of NIST’s most versatile technologies, the microhotplate.

The novel NIST device is being developed as the foundation for miniature yet highly accurate gas sensors that can detect chemical and biological agents, industrial leaks and even signs of extraterrestrial life from aboard a planetary probe.

The tiny microhotplates—no wider than a human hair—are programmed to cycle through a range of temperatures. They can be coated with metal oxide films tailored to detect specific gas species. Airborne chemicals attach to the surface of the detector depending on the type of film and the temperature of the surface, changing the flow of electricity through the device, which serves as the “signature” for identifying both the type and concentration of the gas in the ambient air.

Accurate microhotplate temperature measurements are crucial for the discrimination and quantification of gas species, while reliable, long-term operation demands that the microhotplate’s temperature sensors be either highly stable or able to sense when they’ve drifted, a functionality known as a “built-in self test” (BIST). As demonstrated for the first time in a paper in an upcoming issue of IEEE Electron Device Letters,* the new calibration method satisfies both requirements.

A portion of the polysilicon heater making up the microhotplate originally served as the device’s temperature sensor. However, this sensor would slowly drift over time from its initial calibration. Within three months, the temperature readings were off by as much as 25 degrees Celsius at high temperatures.

The NIST engineers overcame this shortcoming by using data from two additional temperature sensors—a highly stable, thin-film platinum/rhodium thermocouple integrated in the microhotplate structure for one sensor and the thermal efficiency of the structure itself for the other. Comparing the temperatures reported by these two sensors provides the microhotplate with its internal monitoring system. As long as the absolute value of the difference between the reported temperatures remains below a specified threshold value, the average of the two readings is considered reliable. Should the difference exceed the threshold, the system reports an error.

The original polysilicon sensor still provides the microhotplate’s initial temperature measurement, which is used to calibrate the other two sensors. With the complete “check and balance” system in place, temperature measurements are accurate to within 1.5 degrees Celsius.

Having successfully demonstrated the new temperature calibration system for their microhotplate, the NIST researchers are working on additional advancements for the technology. Next in line is the development of a built-in system for sensing contamination of the metal oxide films critical to the microhotplate’s use in gas detection.

* M. Afridi, C. Montgomery, E. Cooper-Balis, S. Semancik, K.G. Kreider and J. Geist. Analog BIST functionality for microhotplate temperature sensors. IEEE Electron Devices, Volume 30, No. 9 (September 2009).

Michael E. Newman | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>