Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telltale heat

25.03.2009
At first glance, the rotor blade appears to be flawless, but the expert knows that outward appearances cannot be trusted. He taps the surface and listens.

A full, deep sound tells him that the laminate is homogeneous, while a more flat, hollow tone indicates irregularities in the material.


This is a thermographic image of air inclusions (light-colored) in a rotor blade. Credit: Fraunhofer WKI

Delaminated and hollow sections of a certain size near the surface can also be detected by running an expert hand over the surface material. But even an experienced inspector cannot find all hidden faults in this way.

Rotor blades consist mainly of glass fibers which are processed to form mats or meshes. In order to make a 60-meter rotor blade, hundreds of these mats have to be laid flat inside a mold and impregnated with special resins in a vacuum.

Even minor irregularities can cause air bubbles or other faults to form, and these often lead to mechanical stresses in the material when the blade is subjected to everyday loads. As a consequence, the laminate can rip and cause the rotor blades to fail prematurely.

Researchers at the Fraunhofer Wilhelm-Klauditz-Institut WKI in Braunschweig are able to make such faults visible. "Infrared thermography is well suited to this task, as it is fast, relatively cheap and doesn't cause any damage," explains WKI project manager Dr. Hiltrud Brocke. "The surface is briefly heated with an infrared radiator. A special camera shows how the heat front spreads inside the material. If the front hits on any air inclusions or delaminated areas, it accumulates because heat spreads less in air than in solid laminate."

In this way, the researchers can peer several centimeters into the material. "Because the equipment – the infrared radiator, a camera and a computer – is mobile, we can carry out measurements during production, at the end of the transport route, and also on fully assembled wind energy plants," says Brocke. The researchers will be demonstrating their technology on a rotor blade section incorporating several typical faults at the Hannover-Messe from April 20 to 24 (Hall 27, Stand G20).

Hiltrud Brocke | EurekAlert!
Further information:
http://www.wki.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>