Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tecnalia participates in creation of glass that optimizes use of solar energy

26.08.2010
The Construction Unit at Tecnalia (in conjunction with the University of Cantabria) has taken part in the Sunglass project, the aim of which is to develop a new building product. This involves a glass that augments the efficiency of photovoltaic solar systems, in such a manner that it boosts having more renewable energy in the construction sector.

The term "photovoltaic" literally means "light-electricity". This technology arose in the 1950s and currently has great possibilities of making contributions in the transition towards sustainable development in the building sector. To this end, the challenge for the Sunglass project is to boost the use of photovoltaic solar energy by means of increasing the performance of the currently existing solar panels (their performance goes up to 15 % now).

Research carried out to date has focused on modifying the semiconductor material to make use of a greater part of the solar spectrum. Nevertheless, the Sunglass project puts forward an alternative approach, involving the "conversion of frequencies" phenomenon — based on absorbing photons of certain frequencies and emitting another range of frequencies.

Study on photoactive compounds

Various photoactive compounds were investigated for the project. The objective was to determine their capacity to absorb high-frequency radiation in order to subsequently emit it at ranges more effective for solar cells, as well as the possibility of implementing these materials in the glass coating of solar panels. These compounds were used to develop the special glass for these photovoltaic applications. In this way, substituting the current glass of solar panels by the new product, an increase in energy efficiency was obtained.

By means of the "conversion of frequencies" produced by the glass, the radiation incident on the solar cells is more effective and gives rise to a significant increase in their efficiency (about 2-3 %), and which will have huge repercussion in the building industry.

This new technique will boost the production of clean energy without acoustic contamination and will avoid greenhouse effect gas emissions, besides being able to be used as a complement to other energy sources and provide great flexibility in its applications.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Sunglass energy source gas emission solar cells solar panels

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>