Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tecnalia participates in creation of glass that optimizes use of solar energy

26.08.2010
The Construction Unit at Tecnalia (in conjunction with the University of Cantabria) has taken part in the Sunglass project, the aim of which is to develop a new building product. This involves a glass that augments the efficiency of photovoltaic solar systems, in such a manner that it boosts having more renewable energy in the construction sector.

The term "photovoltaic" literally means "light-electricity". This technology arose in the 1950s and currently has great possibilities of making contributions in the transition towards sustainable development in the building sector. To this end, the challenge for the Sunglass project is to boost the use of photovoltaic solar energy by means of increasing the performance of the currently existing solar panels (their performance goes up to 15 % now).

Research carried out to date has focused on modifying the semiconductor material to make use of a greater part of the solar spectrum. Nevertheless, the Sunglass project puts forward an alternative approach, involving the "conversion of frequencies" phenomenon — based on absorbing photons of certain frequencies and emitting another range of frequencies.

Study on photoactive compounds

Various photoactive compounds were investigated for the project. The objective was to determine their capacity to absorb high-frequency radiation in order to subsequently emit it at ranges more effective for solar cells, as well as the possibility of implementing these materials in the glass coating of solar panels. These compounds were used to develop the special glass for these photovoltaic applications. In this way, substituting the current glass of solar panels by the new product, an increase in energy efficiency was obtained.

By means of the "conversion of frequencies" produced by the glass, the radiation incident on the solar cells is more effective and gives rise to a significant increase in their efficiency (about 2-3 %), and which will have huge repercussion in the building industry.

This new technique will boost the production of clean energy without acoustic contamination and will avoid greenhouse effect gas emissions, besides being able to be used as a complement to other energy sources and provide great flexibility in its applications.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Sunglass energy source gas emission solar cells solar panels

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>