Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology using microwave heating may impact electronics manufacture

11.06.2014

Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating – essentially the same forces that heat up leftover food with such efficiency.

Instead of warming up yesterday’s pizza, however, this concept may provide a technological revolution.

It could change everything from the production of cell phones and televisions to counterfeit-proof money, improved solar energy systems or quick identification of troops in combat.

The findings, recently published in Materials Letters, are essentially a “proof of concept” that a new type of nanoparticle production system should actually work at a commercial level.

“This might be the big step that takes continuous flow reactors to large-scale manufacturing,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering. “We’re all pretty excited about the opportunities that this new technology will enable.”

Nanoparticles are extraordinarily small particles at the forefront of advances in many biomedical, optical and electronic fields, but precise control of their formation is needed and “hot injection” or other existing synthetic approaches are slow, costly, sometimes toxic and often wasteful.

A “continuous flow” system, by contrast, is like a chemical reactor that moves constantly along. It can be fast, cheap, more energy-efficient, and offer lower manufacturing cost. However, heating is necessary in one part of the process, and in the past that was best done only in small reactors.

The new research has proven that microwave heating can be done in larger systems at high speeds. And by varying the microwave power, it can precisely control nucleation temperature and the resulting size and shape of particles.

“For the applications we have in mind, the control of particle uniformity and size is crucial, and we are also able to reduce material waste,” Herman said. “Combining continuous flow with microwave heating could give us the best of both worlds – large, fast reactors with perfectly controlled particle size.”

The researchers said this should both save money and create technologies that work better. Improved LED lighting is one possibility, as well as better TVs with more accurate colors. Wider use of solid state lighting might cut power use for lighting by nearly 50 percent nationally. Cell phones and other portable electronic devices could use less power and last longer on a charge.

The technology also lends itself well to creation of better “taggants,” or compounds with specific infrared emissions that can be used for precise, instant identification – whether of a counterfeit $20 bill or an enemy tank in combat that lacks the proper coding.

In this study, researchers worked with lead selenide nanoparticles, which are particularly good for the taggant technologies. Other materials can be synthesized using this reactor for different applications, including copper zinc tin sulfide and copper indium diselenide for solar cells.

New Oregon jobs and businesses are already evolving from this work.

OSU researchers have applied for a patent on aspects of this technology, and are working with private industry on various applications. Shoei Electronic Materials, one of the collaborators, is pursuing “quantum dot” systems based on this approach, and recently opened new manufacturing facilities in Eugene, Ore., to use this synthetic approach for quantum dot enabled televisions, smartphones and other devices.

The research has been supported by the Air Force Research Laboratory, OSU Venture Funds, and the Oregon Nanoscience and Microtechnologies Institute, or ONAMI.

About the OSU College of Engineering: The OSU College of Engineering is among the nation¹s largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

The study this story is based on is available online: http://bit.ly/1pJjhnK

Greg Herman | Eurek Alert!
Further information:
http://oregonstate.edu/ua/ncs/archives/2014/jun/technology-using-microwave-heating-may-impact-electronics-manufacture

Further reports about: LED Nanoscience OSU copper heating manufacture reactor small synthetic technologies

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>